

Optimising Irrigated Grains (FAR1906-003RTX) A Grains Research & Development Corporation (GRDC) investment

Winter Crops

2020 Provisional Research Results

Field Applied Research Australia Phone: 03 5265 1290 Post: Shed 2/63 Holder Rd, Bannockburn VIC 3331 Website: www.faraustralia.com.au ABN: 33159209480

Irrigated Cropping Council Promoting irrigated agriculture Trial Series Title Winter Crops

Trial Sites Finley and Whitton, NSW Kerang, Victoria

Project Funder GRDC

Study Director Nick Poole

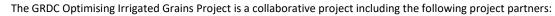
Research Organisations Foundation for Arable Research Australia Irrigated Cropping Council

Research Manager Ben Morris

Report Written by Nick Poole/Ben Morris/Tom Price/Damian Jones

Report Published 25/02/2021

Released:24 February 2021



Contents

Results	6
Irrigated Faba Bean Trials1	1
Finley Irrigated Research Centre NSW1	2
Trial 1 Optimum Plant Population Under Overhead Irrigation1	2
Trial 2 Optimum Plant Population Under Flood Irrigation1	15
Trial 3 Influence of Rhizobium Inoculation on the Break Crop Effect of Faba Bean Yield and Profitability1	8
Trial 4 Disease Management Strategies for Faba Beans Grown Under Irrigation	
Trial 5 Influence of Plant Growth Regulation on Faba Bean Yield and Profitability Under Irrigation2	23
Kerang VIC	25
Trial 1 Optimum Plant Population Under Sprinkler Irrigation	25
Trial 2 Optimum Plant Population Under Flood Irrigation2	28
Trial 3 Disease Management Strategies for Faba Beans Grown Under Irrigation	31
Trial 4 Influence of Plant Growth Regulation on Faba Bean Yield and Profitability Under	
Irrigation	
Irrigated Chickpea Trials	
Finley Irrigated Research Centre NSW	36
Trial 1 April Sown Chickpeas Under Overhead Irrigation	
Trial 2 May Sown Chickpeas Under Overhead Irrigation	39
Trial 3 Disease Management Strategies for Chickpeas Grown Under Irrigation4	
Kerang VIC	17
Trial 1 Influence of Rhizobium Inoculation on Chickpea Yield and Profitability4	17
Trial 2 Influence of Chickpea Cultivation on Durum Wheat Yield and Profitability4	19
Trial 3 Disease Management Strategies for Chickpeas Grown Under Irrigation	51
Griffith NSW	53
Trial 1 Influence of Rhizobium Inoculation on Chickpea Yield and Profitability	53
Trial 2 Disease Management Strategies for Chickpea Growth Under Irrigation	55
Irrigated Durum Wheat Trials	57
Finley Irrigated Research Centre NSW	58
Trial 1 Optimum Plant Population Under Overhead Irrigation	58
Trial 2 Optimum Plant Population Under Flood Irrigation6	51
Trial 3 Nitrogen Use Efficiency Trial – Nitrogen Rates6	54
Trial 4 Nitrogen Use Efficiency Trial – Nitrogen Timing Trial6	58

Released:24 February 2021

RiverinePlains

Trial 5 Germplasm Disease Management Interaction	71
Trial 6 Disease Management for Irrigated Crops – Products, Rates and Timings	74
Trial 7 Influence of Plant Growth Regulation on Durum Yield and Profitability under Irri	gation 79
Kerang VIC	81
Trial 1 Optimum Plant Population Under Sprinkler Irrigation	81
Trial 2 Optimum Plant Population Under Flood Irrigation	84
Trial 3 Nitrogen Use Efficiency Trial – Nitrogen Rates	87
Trial 4 Nitrogen Use Efficiency Trial – Nitrogen Timing Trial	90
Trial 5 Germplasm Disease Management Interaction	94
Trial 6 Disease Management for Irrigated Crops – Products, Rates and Timings	96
Trial 7 Influence of Plant Growth Regulation on Durum Yield and Profitability under Irri	gation 99
Irrigated Canola Trials	102
Finley Irrigated Research Centre NSW	103
Trial 1 Optimum Plant Population Under Overhead Irrigation	103
Trial 2 Optimum Plant Population Under Flood Irrigation	106
Trial 3 Nitrogen Use Efficiency Trial – Nitrogen Rates	109
Trial 4 Nitrogen Use Efficiency Trial – Nitrogen Timing Trial	112
Trial 5 Influence of Fungicide Management Strategies on Blackleg and Sclerotinia Infect under Overhead Irrigation	
Trial 6 Influence of Plant Growth Regulation on Canola Yield and Profitability under Irrig	
Kerang VIC	120
Trial 1 Optimum Plant Population Under Sprinkler Irrigation	120
Trial 2 Optimum Plant Population Under Flood Irrigation	123
Trial 3 Nitrogen Use Efficiency Trial – Nitrogen Rates	126
Trial 4 Nitrogen Use Efficiency Trial – Nitrogen Timing Trial	128
Irrigated Winter and Spring Barley Trials	132
Finley Irrigated Research Centre NSW	133
Trial 1 Nitrogen Use Efficiency Trial – Nitrogen Rates	133
Trial 2 Nitrogen Use Efficiency Trial – Nitrogen Timing Trial	137
Trial 3 Lodging Control in Irrigated Crops – Winter and Spring Barley	141
Kerang VIC	144
Trial 1 Nitrogen Use Efficiency Trial – Nitrogen Rates	144
Irrigated Soil Amelioration Trials	147

Released:24 February 2021

Trial 1 Influence of Soil Amelioration and Soil Amendments on Faba Bean Yield and Profitability
Kerang VIC151
Trial 1 Influence of Soil Amelioration and Soil Amendments on Faba Bean Yield and Profitability 151
Appendix155
Finley Irrigated Research Centre NSW155
Meteorological Data155
Irrigation Schedule
Crop Inputs162
Soil Test Results164
Kerang VIC171
Meteorological Data171
Irrigation Schedule
Crop Inputs174
Soil Test
Griffith NSW
Meteorological Data185
Irrigation Schedule
Crop Inputs186
Soil Tests

Released:24 February 2021

Results

Applicable to each of the yield tables are the following:

Yield figures followed by the same letter are not considered to be statistically different (p=0.05). Plot yields: To compensate for edge effect a full row width (22.5cm) has been added to either side of the plot area (equal to plot centre to plot centre measurement in this case). All provisional results have been analysed through ARM software with further spatial statistical analysis when the final results are released.

Water Use Efficiency (WUE)

Although it is open to different interpretations a standard water use efficiency has been worked out for the majority of trials based on dividing the yield (kg) by total water available (GSR + Irrigation) minus soil evaporation constant of 110mm. The result being the kg produced per mm of water available.

For the durum wheat trials at Finley WUE has been calculated more specifically using the final harvest dry matter (see page 61).

Released:24 February 2021

2020 Winter Crop Provisional Results Summary

In 2020, 26 irrigated research trials were established at FAR Australia's Finley Irrigated Research Centre (Southern Growers Irrigation Complex) (GPS - 35.619083°, Longitude: 145.584803°) in southern NSW under the GRDC regional investment "Optimising Irrigated Grains" project. A further 22 trials were conducted by Irrigated Cropping Council (ICC) at the Kerang and Griffiths Irrigated Research Centres. The Finley research site is a collaboration between FAR Australia and Southern Growers, whilst the Griffiths Centre is a collaboration between ICC and the Irrigation Research and Extension Committee. With later harvest and spring crop trials the remaining eight trials in SE SA will be reported with the summer crop provisional results in August. The primary objective of these Irrigated Research Centre (IRC) was to look at all aspects of germplasm and input management to push the productivity boundaries for five irrigated crops (barley, faba beans, chickpeas, canola and durum wheat). At Finley the majority of trials were set up under overhead irrigation (travelling lateral) with a smaller number of identical trials set up on a flood irrigation system. At Kerang on the grey clay the reverse was the case. The Finley site was characterised by high fertility as a result of fallow in 2019 (cereal research only) and a failed faba bean crop affected by drought in 2018. Trials under overhead irrigation received a total of 125 or 150mm of irrigation (1.25-1.5 Mega L/ha) applied as five or six applications of 25mm, whilst the flood irrigation bays received 240mm (2.4Mega L/ha) applied as three 80mm applications. This was in addition to a Growing Season Rainfall (GSR) of 244mm April – October. At Kerang, the fertility was relatively high as a result of brown manured dryland vetch in 2019. Trials that were conducted under flood were pre-irrigated or watered up in April, using approximately 150mm (1.5 MI/ha) of irrigation. Spring irrigation application varied between trials, with most receiving 2 irrigations (approximately 180mm or 1.8 Ml/ha), with the chickpeas receiving a single irrigation (80mm) and the durums receiving 4 (280mm). Overhead irrigated trials received between 4 (108mm) and 8 (208mm) irrigations in the spring. Growing season rainfall (April – October) was 250mm, with April being a decile 10 start with 88.6mm for the month, which led into a dry winter until August and then a dry finish.

Finley, NSW

Grain yields and harvest dry matter production under the two irrigation systems

Though not statistically comparable, flood irrigation trials that received more water (484mm compared to 369mm) through the growing season were in general higher yielding than identical trials grown under an overhead irrigation system. Of the crops evaluated, all gave higher yields in identical plant population trials on the flood irrigation bays with canola yields peaking at 4.91t/ha (cv 45Y28), durum at 8.2t/ha (cv Vittaroi) and fabas at 7.45t/ha (cv PBA Amberley). Compared to peak yields under the overhead irrigation trials of 4.27t/ha with canola, 7.25t/ha with durum and 5.17t/ha with faba beans using the same cultivars.

Released:24 February 2021

Nutrition

The research site was characterised by high levels of soil available nitrogen (N) at the start of the season with estimates of over 200kg N/ha at sowing on 0 – 90 cm following the fallow. This resulted in crops of canola and cereals being at their most profitable with lower and the lowest levels of applied nitrogen fertiliser. In addition to available soil mineral N at sowing there was evidence in durum of 70kg N/ha becoming available through mineralisation during the course of the season. High fertility and N mineralisation were mirrored in results observed with canola nutrition trials (following wheat stubble rather than fallow). Canola yields varied from 3.91 - 4.71t/ha based on 0 to 320kg N/ha applied with an optimum of 160kg N/ha. At harvest canola plots with no applied urea (N) fertiliser produced an N offtake of just over 140kg N/ha, harvest dry matter of 12.5t/ha and seed yield of 3.95t/ha. With the background fertility there were few significant differences in canola trials due to N timing.

Crop structure and lodging

Higher plant populations and associated problems with lodging was a constraint to yield observed in winter barley and durum wheat. The highest yields of durum wheat under a flood system were observed with a plant population of just less than 100 plants/m², despite a 19 May sowing date. Higher durum populations resulted in lower yields and higher levels of crop lodging, particularly in the flood irrigation trials. In barley a comparison of winter and spring germplasm showed that RGT Planet (spring) was higher yielding (mean 7.27t/ha in PGR trial) and less dependent on plant growth regulation than Cassiopée (winter) (mean 6.13t/ha). The fertility of the research site and earlier sowing (April 24) did not favour barley productivity and overall yields were disappointing, although lower fertility scenarios should produce better results.

In faba beans and canola experimental plant growth regulation treatments generated large reductions in canopy height and structure but produced no yield differences under overhead irrigation.

Chickpea sowing date

Under overhead irrigation two identical chickpea trials were set up to look at yield performance from an April and May sowing. The spatially separate trials are not statistically comparable however the population trial sown on 27 April gave an average yield of 3.32t/ha (with a peak yield 3.59t/ha cv Genesis090) compared to 19 May sowing with an average yield of 2.88t/ha (with a peak yield 3.41t/ha cv Genesis090). The optimum plant populations being approximately 30 plants/m² with the later sowing and approximately 20 plants/m2 with the earlier sowing. In both trials where plant population fell below the optimum at 10 plants/m², yields were reduced to 3.1t/ha and 2.39t/ha for early and late sowing.

Disease Management

Disease management was a key component to maximising yields on the Finley IRC site in chickpeas and durum. April sown chickpeas produced significant increases in seed yield from disease management strategies based on three fungicide applications. Although yields were higher with newer chemistry based on QoI (strobilurins) and SDHI chemistry the advantage over a chlorothalonil based strategy was not statistically significant. The highest yield achieved under full fungicide protection was 3.67t/ha (cv Genesis090). In canola good visual differences in branch blackleg infection

Released:24 February 2021

did not result in large yield differences with the untreated, this was an unexpected result looking at at visual differences in treatments just prior to harvest.

Soil Amelioration (in collaboration with NSW DPI)

Following soil amelioration treatments being established by NSW DPI in March the trial area was sown with a commercial seed drill to faba beans on 19 May. The mixture of deep ripping, gypsum and organic amendment treatments produced significant yield increases of between 0.66 - 1.22t/ha over the untreated control but there were no significant yield differences amongst the soil amelioration treatments. Of the treatments it was noted that surface applied organic amendment (15t/ha Lucerne pellets) alone also produced a significant yield increase (0.66t/ha).

Ben Morris and Tom Price – FAR Australia

Kerang, Victoria and Whitton (Griffith), NSW

Grain yields and harvest dry matter production under the two irrigation systems

Though not statistically comparable, flood irrigation trials that received more water (300 – 430mm compared to 108-280mm) through the growing season, and in general, produced higher biomass than identical trials grown under an overhead irrigation system. Of the crops evaluated, canola gave similar yields between the two systems, but flood irrigation resulted in higher yields in durum wheat and faba beans. Canola yields peaked at 4.1 t/ha (cv 45Y28), durum at 10.0 t/ha (cv Aurora) and fabas at 7.8 t/ha (cv PBA Amberley). Peak yields under the overhead irrigation trials were 4.3 t/ha in canola, 6.0 t /ha in durum and 4.6 t/ha in faba beans using the same cultivars.

Nutrition

The research site was characterised by high levels of soil available nitrogen (N) at the start of the season with estimates of over 160kg N/ha at sowing on 0 - 60 cm (ranging from 100 to 215 kg N/ha) following brown manures dryland vetch. This resulted in crops of canola and cereals reaching a yield plateau at the lower levels of applied nitrogen fertiliser.

Canola yields varied from 3.00 - 3.63 t/ha based on 0 to 320kg N/ha applied with an optimum of 80 kg N/ha. Visually it was difficult to discern the various N rates or timings in the canola trial during the season. At early flowering, canola plots with no applied urea (N) fertiliser produced an N offtake of just over 250 kg N/ha, harvest dry matter of 11.2 t/ha and seed yield of 3.00t/ha.

Similarly, the durum wheat plots that received no applied urea produced an N offtake of 174 kg N/ha, with a harvest dry matter of 14.5 t/ha and 7.8 t/ha of grain. In durum wheat, where grain protein of greater than 13% is a requirement to meet DR1 specifications, this was achieved by applying 200 kg N/ha on top of the soil N at sowing of 130 kg N/ha (0-60cm).

Crop structure and lodging

Released:24 February 2021

Higher plant populations or higher rates of N, and associated problems with lodging, was a constraint to yield observed in faba beans and long season barley. Variety stem strength was also in play in the durum wheat trials.

The highest yield of durum wheat under a flood system were achieved with Aurora at 196 plants/m2, but that was not statistically different to all other sowing rates ranging from 72 - 240 plants/m². Lodging was controlled in Vittaroi with the single application of a PGR at GS31, whereas this was insufficient to prevent lodging in Aurora.

Where there was no control of lodging in Aurora, yield was reduced by 20% over the standard label rate and timing of Moddus Evo.

In faba bean experimental plant growth regulation treatments generated small reductions in canopy height and had limited effect on lodging at harvest. Lodging was influenced by seeding rates, where the lower rate of 12 plants/m² reduced lodging with no effect on yield. A late PGR application at the end of flowering saw reduced yields due to reduced seed size. In terms of target faba bean plant populations, the seeding rate trial saw yield plateau once a population of 17 plants/m² was reached, suggesting further research on target populations is required.

Disease Management

While disease management was a key part of the trials program, a dry winter and the few local crops saw little incidence of disease in the pulses. The disease strategies in chickpeas in both Griffith and Kerang saw no response, but a response to the 'expensive' strategy in Samira faba beans of 0.45 t/ha over the control despite little disease being visible.

Stripe rust was detected in the durum wheat trials, although the main infection period was before GS39, and so the flag leaf remained relatively unaffected. No treatment was significantly different to that of the untreated control.

Soil Amelioration (in collaboration with NSW DPI)

Following soil amelioration treatments being established by NSW DPI in March, the trial area was sown to a forage seed oat crop on 24 April. Initial response was to where the organic amendment had been applied, either to the surface or placed in the rip line, as increased crop biomass. These differences remained at flowering but by harvest, the mixture of deep ripping, gypsum and organic amendment treatments produced significant seed yield increases of between 0.9 - 1.4t/ha over the untreated control in all but one treatment where excessive lodging may have contributed to reduced yield.

Damian Jones – Irrigated Cropping Council

Caution: Please note that this provisional results summary has been produced prior to spatial analysis being carried out by SAGI. It is at this stage one-year results therefore please use caution in interpretating the results.

Nick Poole - FAR Australia, Project Leader

25th February 2021

Released:24 February 2021

Optimising Irrigated Grains (FAR1906-003RTX) A Grains Research & Development Corporation (GRDC) investment

PROVISIONAL HARVEST RESULTS:

Irrigated Faba Bean Trials

Released:24 February 2021

Finley Irrigated Research Centre NSW

Irrigated trials conducted at the Finley irrigated research centre 2020 were managed by FAR Australia, hosted by Southern Growers.

Trial 1 Optimum Plant Population Under Overhead Irrigation

Location: Finley IRCFAR Code: FAR F20-01-1Sown: 28 April 2020Cultivar: PBA Amberley and Fiesta VF

Harvested: 30th November 2020

Rotation position: Wheat (2019), Faba beans (2018), Fallow after Rice (2017) Soil type & Management: Red clay, Cultivation with speed disc to incorporate stubble in Autumn Irrigation: Overhead lateral irrigation 6 x 25mm in spring. Total applied 150mm (1.5 ML/ha) GSR: April-October 244mm. Total water available (GSR + Irr) 394mm

Key Messages:

- There was no significant difference in grain yield between Fiesta VF and PBA Amberley under overhead irrigation
- Seed rate had a significant impact on grain yield with yield maximised at plant populations of 16 plants/m² and above
- There was no significant difference in pod number between the plant populations although there was a trend suggesting lower pod numbers at populations of 10 plants/m².
- Plant population had a significant impact on crop height with a shorter crop at 10 plants/m².
- There was an interaction between cultivar and plant population on early dry matter production (8 node) where PBA Amberley maximised early dry matter production at 23 plants/m² and Fiesta VF maximised early dry matter production at 45 plants/m²
- Plant population had an impact on dry matter production at early flowering with plant populations of 16/m² and above producing significantly more dry matter than 10-11 plants/m².
- Water use efficiency (WUE) for PBA Amberley based on 4.38t/ha was 15.4kg/mm.

 Table 1. Grain yield (t/ha) of four seed rates with two different cultivars grown under overhead irrigation.

 Yield t/ha

			Yield t/ha	
-1 - 1 - 21			-	••
Plants/m ² (a	ctual)	PBA Amberley	Fiesta VF	Mean
Amberley	Fiesta	Yield t/ha	Yield t/ha	Yield t/ha
10	11	3.00 -	3.31 -	3.15 b
16	16	4.50 -	4.93 -	4.72 a
23	31	4.83 -	4.84 -	4.84 a
32	45	5.17 -	5.15 -	5.16 a
Mean		4.38 -	4.56 -	
LSD Seed Ra	ate p = 0.05	0.49	P val	<0.001
LSD Cultivar	⁻ p=0.05	ns	P val	0.343
LSD Seed Ra	ate x Cultivar.	ns	P val	0.719

Released:24 February 2021

	Plants population			Crop Height						
Seed Rate (seeds/m²)	PBA Amberle	ey	Fiesta VI	F	Me	an	PBA Amberley	Fiesta VF	Me	ean
	Plants/n	n²	Plants/m	2	Plants	s/m²	cm	cm	С	m
12 seeds/m ²	9.8	-	10.5 -		10.1	С	78 -	77 -	77	b
24 seeds/m ²	15.5	-	16.0 -		15.8	С	88 -	97 -	92	а
36 seeds/m ²	22.8	-	31.0 -		26.9	b	85 -	92 -	89	а
48 seeds/m ²	31.8	-	45.0 -		38.4	а	86 -	93 -	90	а
Mean	19.9	-	25.6 -				84 -	90 -		
Cultivar LSD			7.7					6.4		
P val			0.099					0.069		
Seed Rate LSD			9.2					5.4		
P val			<0.001					<0.001		
Cultivar x Seed Rate LSD			ns					ns		
P val			0.415					0.300		

Table 2. Influence of plant population and cultivar on canopy composition, plants/m² (GS13) and crop height (harvest) – assessed GS13 (2 June), harvest (25 Nov).

Table 3. Influence of plant population and cultivar on canopy composition, $pods/m^2$ (harvest) and height to first pod (harvest) – assessed harvest (25 Nov).

Treatment	Canopy	composition
	Pods/m ²	1st Pod Height (cm)
PBA Amberley		
10 plants/m ²	261 -	20.5 -
16 plants/m ²	315 -	21.4 -
23 plants/m ²	359 -	26.4 -
32 plants/m ²	351 -	23.2 -
Fiesta VF		
31 seeds/m ²	353 -	26.7 -
Mean	328	23.6
Cultivar x Seed Rate LSD	79	ns
P val	0.087	0.154

Table 4. Influence of plant population and cultivar on dry matter production (t/ha) at 8 node – assessed 7 July.

				Dry Matter Pro	ductio	n at 8 node		
Plants/m ²		PBA Amb	perley	Fiesta	VF	Mear	า	
Amberley	Fiesta	t/ha	3	t/ha	a .	t/ha		
10	11	0.19	d	0.17	d	0.18	С	
16	16	0.25	cd	0.35	bc	0.30	b	
23	31	0.31	bc	0.41	b	0.36	b	
32	45	0.36	b	0.57	а	0.46	а	
Mean		0.28	-	0.38	-			
LSD Seed R	ate p =	0.08	3	P va	I	<0.00	1	
LSD Cultiva	nr	0.12	2	P va	I	0.077	7	
LSD Seed R	ate x	0.11	L	P va	l	0.040)	

Released:24 February 2021

LSD Seed Rate x Cultivar.

		Dry Matter Production at Early Flowering (GS63)			
Plants/m ² (a	actual)	PBA Amberley	Fiesta VF	Mean	
Amberley	Fiesta	t/ha	t/ha	t/ha	
10	11	1.02 -	1.31 -	1.16 b	
16	16	1.73 -	2.33 -	2.03 a	
23	31	1.88 -	2.76 -	2.32 a	
32	45	2.23 -	2.94 -	2.59 a	
Mean		1.72 b	2.33 a		
LSD Seed Ra	ate p = 0.05	0.67	P val	0.001	
LSD Cultivar	⁻ p=0.05	0.41	P val	0.018	

ns

P val

Table 5. Influence of plant population and cultivar on dry matter production (t/ha) at GS63 – assessed 31 August.

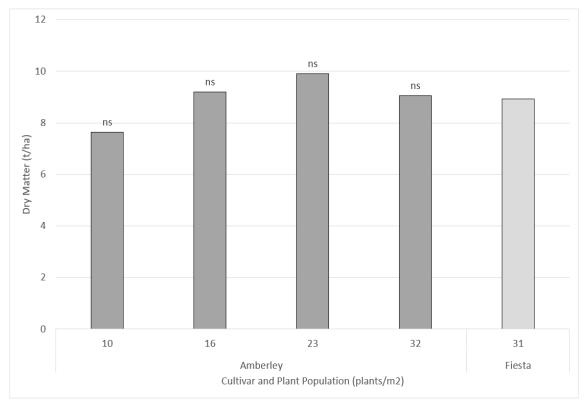


Figure 1. Influence of plant population on dry matter at harvest – assessed 25 November.

Released:24 February 2021

0.822

Trial 2 Optimum Plant Population Under Flood Irrigation

Location: Finley IRCFAR Code: FAR F20-01-2Sown: 28 April 2020Cultivar: PBA Amberley and Fiesta VFHarvested: 30th November 2020Rotation position: Wheat (2019), Faba beans (2018), Wheat (2017)Soil Management: Cultivation with speed disc to incorporate stubble in Autumn

Irrigation: Flood irrigation 3 x 80mm in spring. Total applied 240mm (2.4 ML/ha) **GSR:** April-October 244mm. Total water available (GSR + Irr) 484mm

Key Messages:

- Productivity exceeded 7t/ha with faba beans grown under flood irrigation and though not statistically comparable were 2t/ha higher yielding than the identical trial set up under overhead irrigation.
- Based on 90mm more water applied the faba beans grown on flood had higher pod numbers and greater harvest dry matter than their overhead irrigation equivalents.
- There was no significant difference (p=0.08) in grain yield between Fiesta VF and PBA Amberley under flood irrigation with an average yield of 6.71t/ha and 7.05t/ha respectively.
- Seed rate and resultant plant population had a significant impact on grain yield with yield maximised at populations of 23 plants/m² and above.
- There was no significant difference in pod number between the plant populations, indicating higher pod numbers per plant at the lowest populations.
- Plant population had an impact on early dry matter production (8 node) with plant populations of 20/m² and above producing significantly more dry matter than 11 – 13 plants/m².
- There was an interaction between cultivar, plant population and dry matter production at early flowering (GS 63) where PBA Amberley maximised dry matter production at lower populations (20 plants/m²) than Fiesta VF which maximised dry matter production at 27 plants/m².
- Averaging grain yield and dry matter at harvest PBA Amberley had a harvest index of 45.4% (data not shown).
- The WUE for the higher yielding variety PBA Amberley (7.05t/ha) was 18.9kg/mm.

			Cultivar	
Plants/m ² (a	actual)	PBA Amberley	Fiesta VF	Mean
Amberley	Fiesta	Yield t/ha	Yield t/ha	Yield t/ha
11	13	6.28 -	6.12 -	6.20 b
20	25	7.45 -	6.75 -	7.10 a
31	27	7.33 -	7.06 -	7.19 a
26	31	7.15 -	6.92 -	7.04 a
Mean		7.05 -	6.71 -	
LSD Seed Ra	ate p = 0.05	0.35	P val	<0.001
LSD Cultivar	p=0.05	0.42	P val	0.083
LSD Seed Ra	ate x Cultivar.	ns	P val	0.381

Table 1. Grain yield (t/ha) of four seed rates with two different cultivars grown with flood irrigation.

 Table 2. Influence of seed rate and cultivar on plant population – assessed GS13 (5 June).

Released:24 February 2021

MFMG

		Cultivar	
	PBA Amberley	Fiesta VF	Mean
Seed Rate	Plants/m ²	Plants/m ²	Plants/m ²
12 seeds/m ²	11.1 -	12.8 -	11.9 c
24 seeds/m ²	20.0 -	25.0 -	22.5 b
36seeds/m ²	30.6 -	26.7 -	28.6 a
48 seeds/m ²	26.1 -	31.1 -	28.6 a
Mean	21.9 -	23.9 -	
Cultivar LSD	ns	P val	0.446
Seed Rate LSD	5.8	P val	<0.001
Cultivar x Seed Rate LSD	ns	P val	0.354

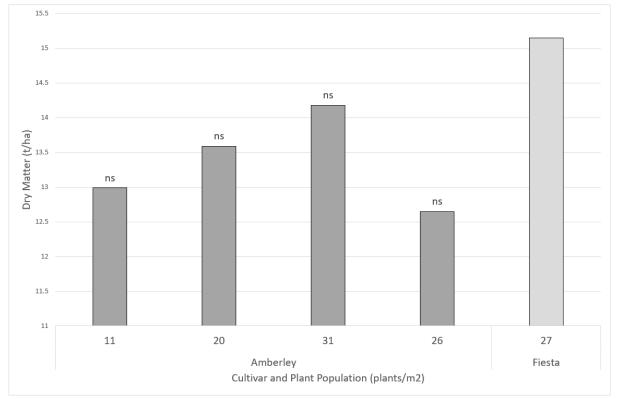
Table 3. Influence of plant population and cultivar on canopy composition, pods/m² and height to first pod – assessed at harvest (26 Nov).

Treatment	Canopy	Canopy composition			
	Pods/m ²	1st Pod Height (cm)			
PBA Amberley					
12 seeds/m ²	451 -	23.8 -			
24 seeds/m ²	453 -	28.9 -			
36seeds/m ²	472 -	27.9 -			
48 seeds/m ²	436 -	32.6 -			
Fiesta VF					
36seeds/m ²	557 -	31.3 -			
Mean	474	28.9			
Cultivar x Seed Rate LSD	ns	ns			
P val	0.409	0.193			

Table 4. Influence of plant population and cultivar on dry matter production (t/ha) at 8 node assessed 7 July.

		Dry	Matter Production at	8 node
Plants/m ² (a	actual)	PBA Amberley	Fiesta VF	Mean
Amberley	Fiesta	t/ha	t/ha	t/ha
11	13	0.18 -	0.25 -	0.22 b
20	25	0.50 -	0.45 -	0.47 a
31	27	0.43 -	0.56 -	0.49 a
26	31	0.55 -	0.55 -	0.55 a
Mean		0.41 -	0.45 -	
LSD Seed Ra	ate p = 0.05	0.14	P val	<0.001
LSD Cultivar	r p=0.05	ns	P val	0.266
LSD Seed Ra	ate x Cultivar.	ns	P val	0.581

Released:24 February 2021



	•						
		Dry Matter Production at early flowering (GS63)					
Plants/m ² (a	actual)	PBA Amb	erley	Fiesta V	VF	Me	an
Amberley	Fiesta	t/ha		t/ha		t/ł	าล
11	13	0.88	f	0.99	ef	0.93	С
20	25	1.83	bc	1.36	de	1.59	b
31	27	1.58	cd	2.32	а	1.95	а
26	31	1.65	bcd	2.01	ab	1.83	ab
Mean		1.48	-	1.67	-		
LSD Seed Ra	ite p = 0.05	0.30		P val		<0.0	001
LSD Cultivar	p=0.05	ns		P val		0.4	03
LSD Seed Rate x Cultivar.		0.41		P val		0.0	03

Table 5. Influence of plant population and cultivar on dry matter production (t/ha) at GS63 – assessed 31 August.

Figure 1. Influence of plant population on dry matter production (t/ha) at harvest – assessed 26 November.

Released:24 February 2021

Trial 3 Influence of Rhizobium Inoculation on the Break Crop Effect of Faba Bean Yield and

<u>Profitability</u>

Location: Finley IRC Sown: 28 April 2020 FAR Code: FAR F20-02-1 Cultivar: PBA Bendoc

Harvested: 30th November 2020

Rotation position: Wheat (2019), Faba beans (2018), Fallow after Rice (2017)
Soil Management: Cultivation with speed disc to incorporate stubble in Autumn
Irrigation: Overhead lateral irrigation 6 x 25mm in spring. Total applied 150mm (1.5 ML/ha)
GSR: April-October 244mm. Total water available (GSR + Irr) 394mm

Key Messages:

- There were no yield benefits of rhizobium inoculation or N input in irrigated faba beans on this research site.
- No benefit was observed in either dry matter, N uptake or root nodule score.
- The WUE based on a trial mean of 6.38t/ha was 22.5kg/mm.

Table 1. Influence of rhizobium inoculation on faba bean grain yield (t/ha) and protein (%).

		Grain yield a	and quality
		Yield	Protein
	Treatment Rate & Timing	t/ha	%
1.	Untreated	6.35 -	13.6 -
2.	Alosca 10kg/ha	6.31 -	13.4 -
3.	Alosca 20kg/ha	6.38 -	13.8 -
4.	Alosca 30kg/ha	6.07 -	13.3 -
5.	40 kg N/ha pod set	6.79 -	14.1 -
6.	40 kg N/ha IBS	6.35 -	13.6 -
	Mean	6.38	13.6
	LSD	ns	ns
	P val	0.412	0.336

Table 2. Influence of rhizobium inoculation on faba bean dry matter production and nitrogen uptake at mid flowering and harvest – assessed GS64 (11 Sep) and harvest (25 Nov).

		Mid flowe	ring (GS64)	Harvest
		Dry matter	Nitrogen (N)	Dry matter
	Treatment Rate & Timing	t/ha	Kg/ha	Kg/ha
1.	Untreated	5.31 -	202 a	12.93 -
2.	Alosca 10kg/ha	5.46 -	153 bc	10.57 -
3.	Alosca 20kg/ha	4.40 -	152 bc	11.62 -
4.	Alosca 30kg/ha	5.13 -	183 ab	12.74 -
5.	40 kg N/ha pod set	4.15 -	139 c	9.99 -
6.	40 kg N/ha IBS	5.33 -	201 a	14.17 -
	Mean	4.96	172	12.00
	LSD	ns	38	3.10
	P val	0.198	0.011	0.093

Released:24 February 2021

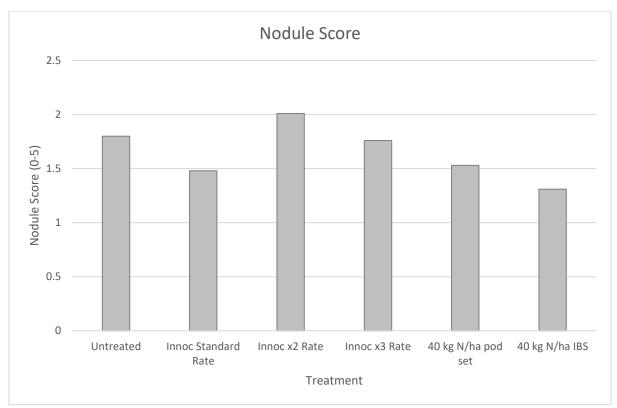


Figure 1. Influence of treatments tested on root nodule scores (0-5 scale) Assessed at 9 node 17-Jul – cv PBA Bendoc.

6 plants were randomly dug out from each plot, roots were gently washed to remove soil. The nodules were counted as effective (pink outside and healthy pink inside) and non-effective (black, white and green). A score based on the number and distribution of effective nodules was calculated from the table below.

Nodule Score	Distribution and Number of Effective Nodules					
	Crown (Top 5cm)	Elsewhere				
0	0	0				
0.5	0	1 to 4				
1.0	0	5 to 9				
1.5	0	>10				
2.0	<10	0				
2.5	<10	<10				
2.75	<10	>10				
3.0	>10	0				
4.0	>10	<10				
5.0	>10	>10				

Table 3. Nodule scoring system.

Released:24 February 2021

The GRDC Optimising Irrigated Grains Project is a collaborative project including the following project partners:

Irrigation Research & **Extension Committee**

Trial 4 Disease Management Strategies for Faba Beans Grown Under Irrigation

Location: Finley IRC	FAR Code: FAR F20-07-1
Sown: 28 April 2020	Cultivar: PBA Amberley and Fiesta
Harvested: 30 th November 2020	

Rotation position: Wheat (2019), Faba beans (2018), Fallow after Rice (2017)
Soil Management: Cultivation with speed disc to incorporate stubble in Autumn
Irrigation: Overhead lateral irrigation 6 x 25mm in spring. Total applied 150mm (1.5 ML/ha)
GSR: April-October 244mm. Total water available (GSR + Irr) 394mm

Key Messages:

- Neither PBA Amberley or Fiesta VF gave a significant yield response to either three spray foliar fungicide programme.
- PBA Amberley had lower disease incidence than Fiesta VF but levels of disease were very low.
- Both fungicide strategies had good control of low disease levels compared to the untreated plots.
- An accidental overspray by a farm contractor applied tebuconazole 145ml/ha for cercospora at the vegetative stage to the whole trial on 1st August. This may have reduced the response to fungicide over the untreated.
- Based on a trial mean of 6.4t/ha the WUE was 22.5kg/mm.

Table 1. Fungicide strategies applied to the trial.

			Treatment mL/ha	
	Strategy	6 Node	Early-Flower	Mid-Flower
		(7 July)	(4 Sep)	(2 Oct)
1.	Untreated	-	-	-
2.	Expensive	Veritas @ 1 L/ha	Aviator Xpro @ 600mL/ha	Veritas @ 1 L/ha
3.	Cheap	Tebuconazole 430 @	Chlorothalonil 720 @	Chlorothalonil 720 @
		145 mL/ha	1.4 L/ha	1.4 L/ha

Please note a contractor overspray of fungicide (tebuconazole 145ml/ha) was made on 1st August for cercospora which may have reduced disease in all treatments

Table 2. Influence of fungicide strategy on grain yield under different fungicide strategies.

				Grain Yield	
		PBA Amberley		Fiesta VF	Mean
	Treatment	Yield t/ha		Yield t/ha	Yield t/ha
1.	Untreated	6.15 -		6.31 -	6.23 -
2.	Expensive	6.36 -		6.66 -	6.51 -
3.	Cheap	6.53 -		6.40 -	6.46 -
	Mean	6.34 -		6.46 -	
LSD	Fungicide p = 0.05		ns	P val	0.104
LSD) Cultivar p=0.05		ns	P val	0.733
LSD) Fungicide x Cultiva	ar P=0.05	ns	P val	0.286

Released:24 February 2021

VF

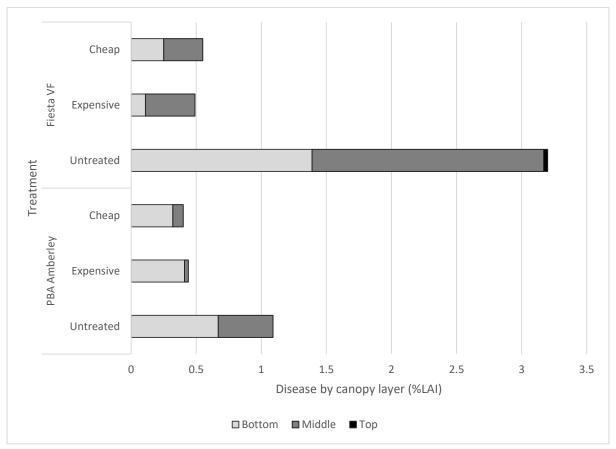


Figure 1. Cercospora leaf spot infection 28 days after fungicide application at mid-flower – Assessed 28-Oct at GS83.

Please note a contractor overspray of fungicide (tebuconazole 145ml/ha) was made on 1st August for cercospora which may have reduced disease in all treatments.

Released:24 February 2021

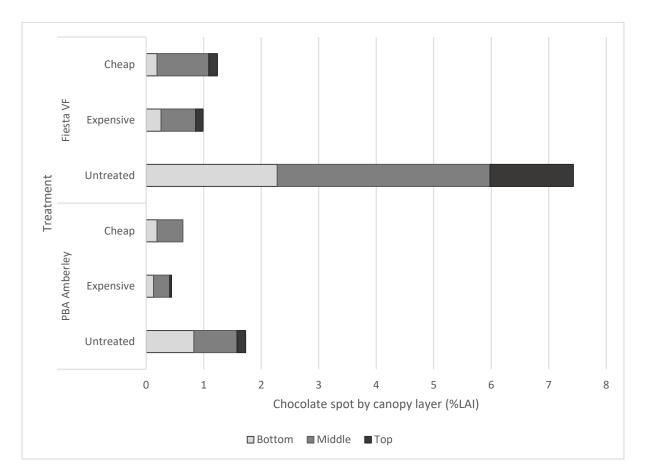


Figure 2. Influence of fungicide strategy on Chocolate spot infection 28 days after fungicide application at mid-flower – Assessed 28-Oct at GS83.

Please note a contractor overspray of fungicide (tebuconazole 145ml/ha) was made on 1st August for cercospora which may have reduced disease in all treatments.

Released:24 February 2021

Trial 5 Influence of Plant Growth Regulation on Faba Bean Yield and Profitability Under

Irrigation

Location: Finley IRC Sown: 28 April 2020 Harvested: 30th November 2020 FAR Code: FAR F20-09-1 Cultivar: PBA Bendoc

Rotation position: Wheat (2019), Faba beans (2018), Fallow after Rice (2017)

Soil Management: Cultivation with speed disc to incorporate stubble in Autumn Irrigation: Overhead lateral irrigation 6 x 25mm in spring. Total applied 150mm (1.5 ML/ha) GSR: April-October 244mm. Total water available (GSR + Irr) 394mm

Key Messages:

- Experimental PGR application in irrigated faba beans gave no significant yield effects although application influenced crop height at early pod set and harvest in this irrigated trial.
- Applying a single experimental PGR (FAR PGR 1) applications at the start of flowering had a significant effect on plant height at pod set and harvest
- Sequencing this earlier treatment with FAR PGR 2 at the end of flowering had no further effect on crop height.
- Reducing plant population to 12 plants/m² reduced yield significantly compared to 19 and 29 plants/m2, with 29 plants/m2 associated with the highest yields in the trial.
- Reducing plant population reduced crop height at pod set (a reduction in height of 6cm for • every 7-10 plants/m² reduction in plant population), but had no significant effect on final crop height at harvest
- There was no lodging recorded in this trial
- Based on 5.03 t/ha the Water Use Efficiency was 17.7 kg/mm (total water available 110mm soil evaporation).

			See	d Rat	e (Plants/m ²)		
	12 seeds (12 plants)	-		•	•		Mean
	Yield t/	'ha	Yield t	/ha	Yield t/	na	Yield t/ha
Untreated	3.94	-	4.91	-	5.18	-	4.68 -
FAR PGR 1 GS61	3.91	-	4.79	-	5.09	-	4.60 -
FAR PGR 1 GS61, PGR 2 GS	3.90	-	4.65	-	4.82	-	
69							4.45 -
Mean	3.92	b	4.78	а	5.03	а	
LSD Seed Rate p = 0.05			0.38		P val		<0.001
LSD PGR Strategy p=0.05			ns		P val		0.404
LSD Seed Rate x PGR P=0.05			ns		P val		0.942

Table 1. Influence of seed rate (plant population) and PGR application on grain yield (t/ha).

Yield figures followed by different letters are considered to be statistically different (p=0.05)

Released:24 February 2021

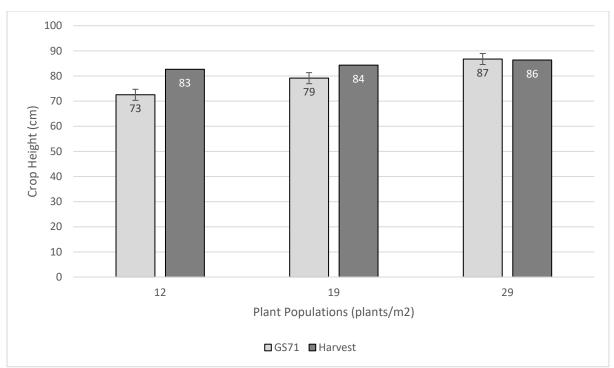


Figure 1. Plant population effect on crop height at GS71 (24-Sep) and pre-harvest (26-Nov). GS71 – P value 0.002, LSD 4.4cm. Harvest - P value 0.495, LSD ns.

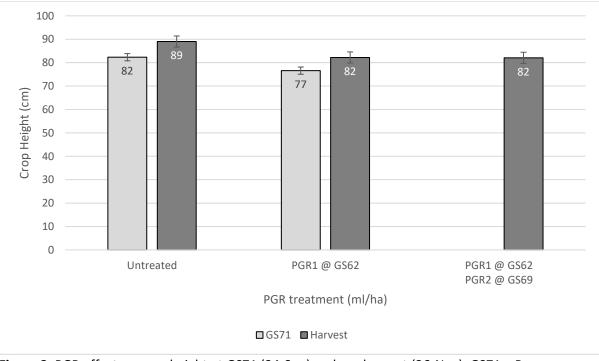


Figure 2. PGR effect on crop height at GS71 (24-Sep) and pre harvest (26-Nov). GS71 – P value=0.002, LSD 3.1. Harvest – P value=0.009, LSD 4.7cm.

Released:24 February 2021

MFMG

s tia

The GRDC Optimising Irrigated Grains Project is a collaborative project including the following project partners:

Irrigation Research &

Extension Committee

SOUTHERI

Ri/erinePlains

Kerang VIC

Irrigated trials conducted at the Kerang irrigated research centre 2020 were managed by the Irrigated Cropping Council.

Trial 1 Optimum Plant Population Under Sprinkler Irrigation

Location: Kerang, VictoriaFAR Code: ICC F20-01-3Sown: 8 May 2020Cultivar: PBA Amberley and FarahHarvested: 16 December 2020Rotation position: Dryland vetch/brown manure 2019Soil Type: Neutral medium grey clayIrrigation: Overhead sprinkler irrigation 5 timings, totalling 129mm (1.29 ML/ha)GSR: April-October 250mm. Total water available 379mm

Key Messages:

- Establishment rate for the trial averaged 90%.
- There were small differences in early canopy development in early August that became significant at the beginning of flowering. Farah tended to have similar biomass to PBA Amberley.
- At harvest, only PBA Amberley was assessed for biomass, and there was no significant difference between the sowing rates.
- At harvest, PBA Amberley and Farah had similar yields with the 18, 24 and 36 seeds/m² seeding rate.
- An 18 seeds/ m^2 equated to 16 plants / m^2 plant establishment.
- Harvest Index ranged from 0.43 to 0.72 but was influenced by the variable biomass data.
- Water use efficiency was 10.8 kg/mm

Table 1. Establishment - Plant population (plants/m²) established from four seed rates with two different cultivars grown under sprinkler irrigation.

		Established Populatio	n
Seed Rate	PBA Amberley	Farah	Mean
	Plants/m ²	Plants/m ²	Plants/m ²
10 seeds/m ²	8.5 e	8.8 e	8.6 c
18 seeds/m ²	13.8 de	19.7 cd	16.7 b
24 seeds/m ²	21.8 bcd	22.9 bc	22.4 b
36 seeds/m ²	29.2 ab	34.5 a	31.9 a
Mean	18.3	21.5	
LSD Seed Rate p = 0.05	5.98	P val	<0.001
LSD Cultivar p=0.05	NS	P val	0.134
LSD Seed Rate x Cultivar.	8.46	P val	0.689

Released:24 February 2021

MFMG

able 2. Canopy meas	arements	arym		nuj.			
Dry matter (t/ha)							
Sowing Rate (seeds/m ²)	10	C	1	.8	2	24	36
Plant Pop							
PBA Amberley	9	I	1	.4	2	22	29
Farah	9		2	20	ź	23	35
Vegetative 6 August							
PBA Amberley	0.58	b	0.50	b	0.79	b	0.72 b
Farah	0.80	b	0.76	b	1.25	а	1.31 a
	p _{var} = <0.0	01, p _{rate}	= 0.012, p _{vxr} =	= 0.514,	lsd _{vxr} = 0.405,	cv% = 3	2.9
Early Flowering							
PBA Amberley	1.55	b	2.06	b	2.84	ab	2.79 ab
Farah	1.73	b	2.53	ab	3.75	а	3.37 a
	p _{var} = 0.11	9, p _{rate} =	= 0.010, p _{vxr} =	0.902, ls	sd _{vxr} = 1.421, o	cv% = 37	' .4
Harvest							
PBA Amberley	7.3	32	6.	57	6	.42	5.31
Farah					8	.36	
	p = 0.321,	lsd = NS	, cv% = 18.6				

Table 2. Canopy measurements – dry matter (DM t/ha).

All biomass analysis should be treated with caution due to the high cv%.

Farah demonstrated higher biomass when compared to PBA Amberley at the higher seeding rates at early August. By early flowering, there was no difference between the varieties at the higher rates, but looking at Amberley alone, sowing rate made no difference to biomass.

At harvest this trend continued with all sowing rates in Amberley having similar biomass. Maximum biomass achieved at harvest by PBA Amberley was 7.32t DM/ha at the lowest seeding rate.

Table 3. Yield (t/ha), grain quality (g/100seeds/m2) and harvest index.

Sowing Rate (seeds/m²) 10 18 24 36 PBA Amberley 3.29 c 4.31 a 4.59 a 4.38 a Farah 3.59 bc 3.96 ab 4.35 a 4.37 a Pwar = 0.754, p pop = 0.001, pwp = 0.445, lsd wpp = .660, cv% = 9.2 5 5 Seed Size (g/100 seeds) 5 8 8 8 8 8 PBA Amberley 82.1 a 81.3 ab 80.6 ab 81.8 a 8 Farah 78.7 ab 76.1 bc 71.2 c 73.2 c 7 Pwar = <0.001, p rate = 0.176, pwpr = 0.396, lsd wr = 5.41, cv% = 4.0 5 0.72 7 Harvest Index 9 0.43 0.59 0.62 0.72 Farah 9.136, lsd = NS, cv% = 22.1 0.44 5 1 1	Grain Yield (t/ha	a)							
Farah 3.59 bc 3.96 ab 4.35 a 4.37 a pvar = 0.754, p pop = 0.001, pvxp = 0.445, lsd vxp = .660, cv% = 9.2 Seed Size (g/100 seeds) Seed Size (g/100 seeds) PBA Amberley 82.1 a 81.3 ab 80.6 ab 81.8 a Farah 78.7 ab 76.1 bc 71.2 c 73.2 c Pwar = <0.001, p rate = 0.176, pvxr = 0.396, lsd vxr = 5.41, cv% = 4.0	-	1	0	1	L8	2	24	36	
Point of the po	PBA Amberley	3.29	с	4.31	а	4.59	а	4.38 a	
Seed Size (g/100 seeds) PBA Amberley 82.1 a 81.3 ab 80.6 ab 81.8 a Farah 78.7 ab 76.1 bc 71.2 c 73.2 c pvar = <0.001, p rate = 0.176, pvxr = 0.396, lsd vxr = 5.41, cv% = 4.0	Farah	3.59	bc	3.96	ab	4.35	а	4.37 a	
PBA Amberley 82.1 a 81.3 ab 80.6 ab 81.8 a Farah 78.7 ab 76.1 bc 71.2 c 73.2 c pvar = <0.001, p rate = 0.176, pvxr = 0.396, lsd vxr = 5.41, cv% = 4.0		p _{var} = 0.75	4, p _{pop}	a = 0.001, p _{vxp} = 0	.445 <i>,</i> Isd	_{vxp} = .660, cv% =	= 9.2		
Farah 78.7 ab 76.1 bc 71.2 c 73.2 c pvar = <0.001, p rate = 0.176, pvxr = 0.396, lsd vxr = 5.41, cv% = 4.0 Harvest Index V PBA Amberley 0.43 0.59 0.62 0.72 Farah 0.44 0.44 0.44	Seed Size (g/100) seeds)							
pvar = <0.001, p rate = 0.176, pvxr = 0.396, lsd vxr = 5.41, cv% = 4.0 Harvest Index PBA Amberley 0.43 0.59 0.62 0.72 Farah 0.44	PBA Amberley	82.1	а	81.3	ab	80.6	ab	81.8 a	
Harvest Index Operation	Farah	78.7	ab	76.1	bc	71.2	С	73.2 c	
PBA Amberley 0.43 0.59 0.62 0.72 Farah 0.44 0.44 0.44		p _{var} = <0.0	01, p _{ra}	_{ete} = 0.176, p _{vxr} = 0	0.396, ls	d _{vxr} = 5.41, cv%	= 4.0		
Farah 0.44	Harvest Index								
	PBA Amberley	0.4	43	0.	.59	0.	62	0.72	
n = 0.136. lsd = NS. cv% = 22.1	Farah					0.	44		
		p = 0.136,	lsd = N	IS, cv% = 22.1					

Released:24 February 2021

Highest yield grain was from the 24 seeds/m² rate in Amberley, but not significantly different to the 18 and 36 seeds/m2 in both varieties. 18 seeds/m² equates to a plant population of approximately 16 plants/m².

Seed size in Amberley was not affected by sowing rate, although seeding rate did influence seed size in Farah.

Harvest Index was not influenced by seeding rate, however the data should be viewed with caution due to the high variability of the data.

The average yield for the trial was 4.1 t/ha. This represents a WUE of 15.2 kg/mm.

Released:24 February 2021

Trial 2 Optimum Plant Population Under Flood Irrigation

Location: Kerang, VictoriaFAR Code: ICC F20-01-4Sown: 8 May 2020Cultivar: PBA Amberley and FarahHarvested: 15 December 2020Rotation position: Dryland vetch/brown manure 2019Soil Type: Neutral medium grey clayIrrigation: Flood irrigation 3 applications totalling 330mm (3.3 ML/ha)GSR: April-October 250mm. Total water available 580mm

Key Messages:

- Establishment rate for the trial averaged 99%.
- There were small differences in early canopy development in early August that became significant at the beginning of flowering. Farah tended to have greater biomass than PBA Amberley.
- At harvest, only PBA Amberley was assessed for biomass, and there was no significant difference between the sowing rates.
- At harvest, PBA Amberley had similar yields with the 18, 24 and 36 seeds/m² sowing rate.
- Farah had similar yields across all sowing rates.
- An 18 seeds/m² equated to 18 plants /m² establishment.
- Harvest Index ranged from 0.37 to 0.73 but was influenced by the variable biomass data.
- Water use efficiency was 15.4 kg/mm

Table 1. Establishment - Plant population (plants/m²) established from four seed rates with two different cultivars grown under flood irrigation.

		Established Populatio	n
Seed Rate	PBA Amberley	Farah	Mean
	Plants/m ²	Plants/m ²	Plants/m ²
10 seeds/m ²	13.4 d	14.1 d	13.7 d
18 seeds/m ²	16.2 cd	20.1 bc	18.1 c
24 seeds/m ²	23.9 b	24.7 b	24.3 b
36 seeds/m ²	32.0 a	35.6 a	33.8 a
Mean	21.4	23.6	
LSD Seed Rate p = 0.05	2.85	P val	<0.001
LSD Cultivar p=0.05	NS	P val	0.287
LSD Seed Rate x Cultivar.	4.03	P val	0.905

Released:24 February 2021

				.,, ,					
Dry matter (t/ha)									
Sowing Rate (seeds/m²)	10		1	18		24		36	
Vegetative 6 Aug	ust								
PBA Amberley	1.00	b	1.55	ab	1.42	ab	1.53	ab	
Farah	1.07	b	1.28	b	1.58	ab	1.92	а	
	p_{var} = 0.553, p _{rate} = 0.023, p_{vxr} = 0.473, lsd _{vxr} = 0.608, cv% = 29.1								
Early Flowering									
PBA Amberley	3.53	cd	4.79	bcd	4.29	cd	5.04	bcd	
Farah	3.38	d	5.17	bc	6.10	ab	6.90	а	
	p _{var} = 0.026, p _{rate} = 0.002, p _{vxr} = 0.229, lsd _{vxr} = 1.696, cv% = 23.5								
Harvest									
PBA Amberley	11	.12	9.	69	11	.06	11	.40	
Farah					16	5.7			
	p = 0.770, lsd = NS, cv% = 22.9								

 Table 2. Canopy measurements – dry matter (DM t/ha).

All biomass analysis should be treated with caution due to the high cv%.

Farah demonstrated higher biomass when compared to PBA Amberley at the higher seeding rates at early flowering. This trend continued at harvest (24 seeds/m² rate only) but was not statistically different due to the large variation in the data.

Maximum biomass achieved at harvest by PBA Amberley was 11.4 t DM/ha at the highest seeding rate, but was not statistically different to all other seeding rates.

Grain Yield (t/ha)								
Sowing Rate (seeds/m ²)	10		18	3	24	Ļ	36	
PBA Amberley	6.78	С	7.65	ab	7.88	а	7.83	а
Farah	6.62	С	6.77	С	7.03	bc	6.97	С
	$p_{var} = <0.001$, $p_{pop} = 0.009$, $p_{vxp} = 0.302$, lsd $_{vxp} = 0.642$, cv% = 6.1							
Seed Size (g/100 s	eeds)							
PBA Amberley	73.	8	72	.8	75.	3	74.	0
Farah	72.	0	73	.2	73.	5	73.	8
	p_{var} = 0.162, p _{rate} = 0.248, p_{vxr} = 0.487, lsd _{vxr} = NS, cv% = 2.4							
Harvest Index								
PBA Amberley	0.5	5	0.7	'3	0.6	5	0.6	1
Farah					0.3	7		
	p = 0.329, lsd = NS, cv% = 21.3							

 Table 3. Yield and grain quality.

Highest yield grain was from the highest rate (36 seeds/m²) of PBA Amberley. However the yields of the 18, 24 and 36 seeds/m2 was statistically similar.

Released:24 February 2021

MFMG

The GRDC Optimising Irrigated Grains Project is a collaborative project including the following project partners:

RiverinePlains

All seeding rates of Farah had similar yields.

PBA Amberley was the higher yielding variety.

Seed size was not influenced by variety or seeding rate.

Harvest Index was highly variable, due to the variation in the biomass data obtained via quadrat cuts and should be viewed with caution.

The average yield for the trial was 7.2 t/ha. This represents a WUE of 15.0 kg/mm.

Released:24 February 2021

Trial 3 Disease Management Strategies for Faba Beans Grown Under Irrigation

Location: Kerang, VictoriaFAR Plot: ICC F20-07-2Sown: 18 May 2020Cultivar: PBA Samira and FarahHarvested: 16 December 2020Rotation position: Dryland vetch/brown manure 2019Soil Type: Neutral medium grey clayIrrigation: Flood irrigation 3 applications totalling 320mm (3.2 ML/ha)GSR: April-October 250mm. Total water available 570mm

Key Messages:

- Disease pressure was low for the season and very little disease was observed in the trial.
- Analysis of the yield data indicates that the 'expensive' fungicide strategy did improve grain yield.

Table 1. Fungicide strategies tested.

Strategy		Crop Growth Stage	
	Vegetative	Early Flowering	Early Podding
Untreated (control)	No Fungicide	No Fungicide	No Fungicide
'Cheap'	145 ml/ha tebuconazole	1.0 l/ha chlorothalonil	1.0 l/ha chlorothalonil
'Expensive'	1.0 l/ha Veritas	0.6 l/ha Aviator	1.0 l/ha Veritas

Table 2a. Fungicide strategy and yield (t/ha).

Strategy	Yield (t/ha)
Untreated (Control)	6.58 b
'Cheap'	6.48 b
'Expensive'	6.99 a
P val	0.006
LSD	0.298
cv%	4.2

Table 2b. 2 Way ANOVA: Yield (t/ha).

RiverinePlains

Strategy	Farah	PBA Samira
Untreated (Control)	6.32 ab	6.84 c
'Cheap'	6.22 a	6.74 c
'Expensive'	6.69 bc	7.29 d
	p _{var} = <0.001, p _{fun} = 0.006, p	_{vxf} = 0.952, lsd _{vxf} = 0.42, cv% = 4.2

Analysis of the yield data indicated that there was no interaction between variety and fungicide strategy (p = 0.952).

Released:24 February 2021

PBA Samira was a higher yielding cultivar than Farah (6.96 t/ha vs 6.41 t/ha, p = <0.001, lsd = 0.243) and the 'expensive' strategy was higher yielding than the 'cheap' and untreated strategies.

Disease assessments through the later part of the season only found low levels of disease in the lower canopy. Foliar lesions were identified as cercospera, and mainly on the leaves that were beginning to senesce deep in the canopy.

Released:24 February 2021

Trial 4 Influence of Plant Growth Regulation on Faba Bean Yield and Profitability Under

Irrigation

Location: Kerang, VictoriaFAR Code: ICC F20-09-2Sown: 18 May 2020Cultivar: PBA BendocHarvested: 16 December 2020Rotation position: Dryland vetch/brown manure 2019Soil Type: Neutral medium grey clayIrrigation: Flood irrigation 3 applications totalling 320mm (3.2 ML/ha)GSR: April-October 250mm. Total water available 570mm

Key Messages:

- Yield was reduced by the late application of 'PGR2', which could be partially explained by the smaller bean size of the plots treated with 'PGR2'
- Some height reduction was measured by the 1 application of 'PGR1' at early flowering. A further application of 'PGR2' at late flowering did not affect final plant height.
- Lodging was influenced more by population than PGR application, with the low population of 12 seeds/m2 having the least lodging and yielding similar to the higher population treatments.

Table 1. Faba Bean treatments to reduce lodging and brackling.

Treatments	
	Vegetative
Population	12, 24 and 36 seeds/m2
Single PGR	'PGR1' at early flowering
Dual PGR	'PGR1' at early flowering + 'PGR2' at end of flowering

Table 2. Establishment - Plant population (plants/m²) established from three seed rates grown under flood irrigation.

Seed Rate	PBA Bendoc
	Plants/m ²
12 seeds/m ²	13.4 c
24 seeds/m ²	23.7 b
36 seeds/m ²	32.8 a
Mean	23.9
P Seed Rate p = 0.05	<0.001
LSD Seed Rate p=0.05	3.20
cv%	16.5

Analysis of the yield, seed size, plant height or lodging score at harvest data indicated that there was no interaction between population and PGR strategy for any of these parameters measured.

As presented in Table 3a, population had no effect on yield, seed size or plant height. It did, however influence lodging score. The result should be viewed with caution due to the large variability in the data.

Released:24 February 2021

Table 3b illustrates the effect of the PGR applications. Yield was reduced with the use of 'PGR2' in the dual PGR treatment, as was seed size. Seed size was 93.5% of the untreated control, which is close to the reduced yield of 92.2%.

Lodging score for the single PGR was lower than that of the control and the dual application, but as there was considerable variability in the data, this result should be viewed with caution.

Strategy	Yield (t/ha)	Seed Size (g/100s)	Plant Height (cm)	Lodging Score
12 seeds/m ²	7.42	67.3	101.2	1.6 a
24 seeds/m ²	7.40	67.9	107.1	3.3 b
36 seeds/m ²	6.74	67.8	102.5	3.4 b
р	0.631	0.688	0.126	<0.001
lsd	NS	NS	NS	0.866
cv%	6.3	2.9	6.8	30.6

Table 3b. Effect of PGR on yield, bean size, plant height and lodging score.

Strategy	Yield (t/ha)	Seed Size (g/100s)	Plant Height (cm)	Lodging Score
Untreated (control)	7.31 a	69.4 a	109.6 a	3.0 a
Single PGR	7.30 a	68.7 a	100.4 b	4.0 b
Dual PGR	6.74 b	64.9 b	100.8 b	3.1 a
р	0.006	<0.001	0.006	0.046
lsd	0.3798	1.665	5.96	0.866
cv%	6.3	2.9	6.8	30.6

Released:24 February 2021

The GRDC Optimising Irrigated Grains Project is a collaborative project including the following project partners:

Irrigation Research & **Extension Committee**

Optimising Irrigated Grains (FAR1906-003RTX) A Grains Research & Development Corporation (GRDC) investment

PROVISIONAL HARVEST RESULTS:

Irrigated Chickpea Trials

Released:24 February 2021

Finley Irrigated Research Centre NSW

Irrigated trials conducted at the Finley irrigated research centre 2020 were managed by FAR Australia, hosted by Southern Growers.

Trial 1 April Sown Chickpeas Under Overhead Irrigation

Protocol objective: Assess the performance of chickpeas sown in late April at different plant populations. (*note the intention had been to irrigate for emergence compared to Trial 2 where chickpeas under flood would be evaluated. Instead chickpeas were sown under overhead irrigation on 27 April (<i>Trial 1*) and the identical trial sown on 19 May)

Location: Finley IRC Sown: 27 April 2020 Harvested: 11th December 2020 FAR Code: CP20-01-1 Cultivar: Genesis 090 and PBA Royal

Rotation position: Wheat (2019), Faba beans (2018), Fallow after Rice (2017) Soil Management: Cultivation with speed disc to incorporate stubble in Autumn Irrigation: Overhead lateral Irrigation 6 x 25mm in spring. Total applied 150mm (1.5 Ml/ha) GSR: April-October 244mm. Total water available (GSR+Irr) 394mm

Key Messages:

- Chickpeas sown 27 April under overhead irrigation gave yields of between 3.1 3.58t/ha (cv Genesis 090) and 3.0 – 3.35t/ha (cv PBA Royal).
- Neither plant populations (11- 38 plants/m²) or cultivar had a significant impact on chickpea grain yield at this early sowing date, although with both cultivars the lowest yields were recorded at the lowest plant populations (11 13 plants/m2).
- There were no significant differences in pod number due to cultivar or plant population and in the height of the first pods due to plant population, although a trend suggested lower height to first pod at lower plant populations.
- Significant interactions were observed between plant population and cultivar on dry matter (DM) production at early flowering; Genesis 090 maximised DM production at 38 plants/m² whilst PBA Royal maximised DM production at a lower plant population (28 plants/m²).
- There were no significant differences in DM at harvest (PBA Royal) with an average of 8.22t/ha and a harvest index of 38.8% (data not shown).
- The WUE for Genesis 090 based on average yield of 3.45t/ha was 12.1kg/mm.

Released:24 February 2021

0			Grain Yield	
Plants/m ² (ac	tual)	Genesis 090	PBA Royal	Mean
Genesis 090	PBA Royal	Yield t/ha	Yield t/ha	Yield t/ha
11	13	3.10 -	3.00 -	3.05 -
22	19	3.53 -	3.24 -	3.39 -
25	28	3.57 -	3.35 -	3.46 -
38	34	3.58 -	3.18 -	3.38 -
Mean		3.45 -	3.19 -	
LSD Cultivar p	=0.05	ns	P val	0.211
LSD Seed Rate	e p = 0.05	ns	P val	0.197
LSD Seed Rate	e x Cultivar.	ns	P val	0.901

Table 1. Influence of seed rates (plant populations) on grain yield (t/ha) with two different varieties grown under overhead irrigation.

 Table 2. Influence of seed rate and cultivar on plant population – assessed V6, 12-June.

 Treatment

	Genesis 090	PBA Royal	Mean
Seed Rate	Plants/m ²	Plants/m ²	Plants/m ²
15seeds/m ²	11 -	13 -	12 d
25 seeds/m ²	22 -	19 -	20 c
35 seeds/m ²	25 -	28 -	27 b
45 seeds/m ²	38 -	34 -	36 a
Mean	24 -	23 -	
Cultivar LSD	ns	P val	0.652
Seed Rate LSD	4.6	P val	<0.001
Cultivar x seed rate LSD	ns	P val	0.371

Table 3. Influence of plant population and cultivar on canopy composition, $pods/m^2$, height to first pod (cm), and harvest dry matter (t/ha) – assessed at harvest, 2-December.

Treatment	Canopy composition		Harvest Dry Matter
	Pods/m ²	1 st Pod Height (cm)	t/ha
Genesis 090			
25 plants/m ²	1209 -	40 a	7.80 -
PBA Royal			
13 plants /m ²	1115 -	34 b	8.41 -
19 plants /m ²	1169 -	37 ab	8.62 -
28 plants /m ²	1073 -	39 a	8.10 -
34 plants /m ²	1111 -	39 a	7.74 -
Mean	1135	38	8.13
LSD Seed rate x cultivar	ns	3.5	ns
P val	0.927	0.036	0.755

Released:24 February 2021

		Dry Matter Production Early Flowering (GS62)					
Plants/m ² (actual)		Plants/m ² (actual)		PBA Royal		Mea	n
Genesis 090	PBA Royal	t/h	a	t/ha	1	t/ha	a
11	13	3.04	cd	2.38	d	2.71	b
22	19	3.24	cd	2.68	d	2.96	b
25	28	3.74	bc	5.08	а	4.41	а
38	34	4.47	ab	4.82	а	4.64	а
Mean		3.62	b	3.74	а		
LSD Cultivar p	=0.05	0.1	1	P va	I	0.03	9
LSD Seed Rate	p = 0.05	0.64	4	P va	I	<0.00)1
LSD Seed Rate	x Cultivar.	0.90	D	P va	I	0.01	5

Table 4. Influence of plant population and cultivar on dry matter production at early flowering (R2) – assessed 28 September.

Released:24 February 2021

Trial 2 May Sown Chickpeas Under Overhead Irrigation

Protocol objective: Assess the performance of later sown chickpeas grown at different plant populations (*note this was set up to assess the performance of chickpeas that it was thought that would been established on natural rainfall, however in 2020 both April and May sowings were established with natural rainfall).*

Location: Finley IRC Sown: 19 May Harvested: 11th December 2020 FAR Code: FAR CP20-01-2 Cultivar: Genesis 090 and PBA Royal

Rotation position: Wheat (2019), Faba beans (2018), Fallow after Rice (2017) Soil Management: Cultivation with speed disc to incorporate stubble in Autumn Irrigation: Overhead lateral irrigation 6 x 25mm in spring Total applied 150mm (1.5 ML/ha) GSR: April-October 244mm. Total water available (GSR + Irr) 394mm

Key Messages:

- Though not statistically comparable the later sown identical trial gave lower yields than the earlier sowing (27 April Trial 1), 2.39 3.41t/ha (cv Genesis 090) and 2.48 3.04t/ha (cv PBA Royal).
- Plant population had a significant effect on grain yield in chickpeas sown in mid-May, the highest yields being achieved with populations of approximately 30-34 plants/m2 (35-45 seeds/m²)
- There were no significant yield differences between the two cultivars, although as observed in the earlier sowing the mean yield of Genesis 090 was higher than PBA Royal.
- The highest plant populations of 32 37 plants/m2 (based on 45 seeds/m²) had significantly higher flowering dry matter than the lower populations (10 and 21 plants/m²).
- The higher dry matters associated with higher populations correlated to faster ground cover and greater crop reflectance (recorded as NDVI) with significantly higher NDVIs up to mid flowering at which point there was no difference.
- Cultivar and plant population ad a significant impact on crop lodging; Genesis 090 recorded almost no lodging while PBA Royal recorded significantly more lodging, particularly at higher populations (28 and 32 plants/m2).
- The WUE of Genesis090 sown in May based on an average yield of 2.92t/ha was 10.3kg/mm.

Released:24 February 2021

LSD Seed Rate x Cultivar.

			Yield t/ha	
Plants/m ² (actual)		Genesis 090	PBA Royal	Mean
Genesis 090	PBA royal	Yield t/ha	Yield t/ha	Yield t/ha
10	12	2.39 -	2.48 -	2.44 с
22	21	2.82 -	2.83 -	2.82 b
32	28	3.41 -	3.04 -	3.22 a
37	32	3.07 -	2.98 -	3.02 ab
Mean		2.92 -	2.83 -	
LSD Cultivar p	=0.05	ns	P val	0.598
LSD Seed Rate	e p = 0.05	0.32	P val	< 0.001

P val

Table 1. Influence of seed rates (plant populations) on grain yield (t/ha) with two different varieties grown under overhead irrigation.

 Table 2. Influence of seed rate and cultivar on plant population – assessed at V7, 17-July.

ns

Treatment	Plant Population			
	Genesis 090	PBA Royal	Mean	
Seed Rate	Plants/m ²	Plants/m ²	Plants/m ²	
15seeds/m ²	10 -	12 -	11 c	
25 seeds/m ²	22 -	21 -	21 b	
35 seeds/m ²	32 -	28 -	30 a	
45 seeds/m ²	37 -	32 -	34 a	
Mean	25 -	23 -		
Cultivar LSD	ns	P val	0.351	
Seed Rate LSD	5.9	P val	<0.001	
LSD	ns	P val	0.533	

Table 3. Influence of plant population and cultivar on canopy composition, pods/m ² and height to first
pod (cm) – assessed at harvest, 2-Dec.

Treatment Canopy composition			
Cultivar and Population	Pods/m ²	1st Pod Height (cm)	
Genesis 090			
32 plants/m ²	1320 -	48 ab	
PBA Royal			
12 plants/m ²	1019 -	44 bc	
21 plants/m ²	1184 -	41 c	
28 plants/m ²	1050 -	49 a	
32 plants/m ²	1133 -	47 ab	
Mean	1141	46	
LSD	ns	5.1	
P val	0.263	0.026	

Released:24 February 2021

0.482

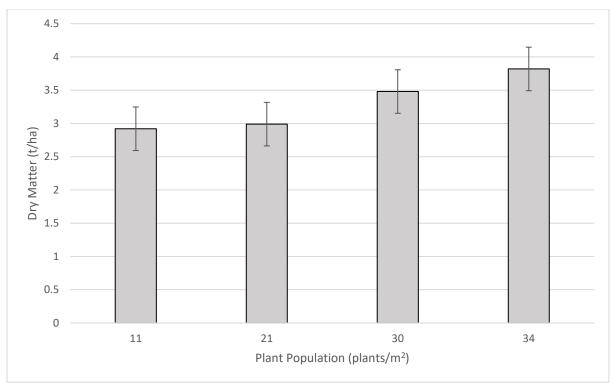


Figure 1. Influence of plant population (mean of two cultivars) on dry matter (t/ha) production at early flowering (R2) – Assessed 28-Sep.

Table 3. Influence of plant population (mean of two cultivars) on crop reflectance measured as normalised differential vegetation index (NDVI) (0-1) – assessed 28 July, 14 & 29 September and 15 October.

Treatment	Norm	Normalised differential vegetation index (NDVI)					
Plant Population	V9	V9 V20		R4			
	28-Jul	14- Sep	29- Sep	15- Oct			
	NDVI (0-1)	NDVI (0-1)	NDVI (0-1)	NDVI (0-1)			
11 plants/m ²	0.16 c	0.49 c	0.70 b	0.79 -			
21 plants /m ²	0.17 c	0.61 b	0.76 a	0.79 -			
30 plants /m ²	0.19 b	0.69 a	0.77 a	0.78 -			
34 plants /m ²	0.21 a	0.71 a	0.78 a	0.79 -			
Mean	0.18	0.63	0.75	0.79			
LSD	0.014	0.04	0.022	ns			
P val	< 0.001	< 0.001	<0.001	0.208			

Released:24 February 2021

Table 4. Influence of cultivar and plant population on crop lodging index score (0-500) (assessed RH 2-Dec).

		Lodging Score	
Seedrate (Plants/m ²)	Genesis 090	PBA Royal	Mean
	Score (0-500)	Score (0-500)	Score (0-500)
15seeds/m ² (10,12)	0.0 b	18.8 b	9.4 b
25 seeds/m ² (22,21)	0.0 b	18.8 b	9.4 b
35 seeds/m ² (32,28)	2.5 b	93.8 a	48.1 a
45 seeds/m ² (37,32)	0.0 b	93.8 a	46.9 a
Mean	0.6 b	56.3 a	
LSD Cultivar p=0.05	47.1	P val	0.033
LSD Seed Rate p = 0.05	14.0	P val	<0.001
LSD Seed Rate x Cultivar.	19.8	P val	< 0.001

Released:24 February 2021

Trial 3 Disease Management Strategies for Chickpeas Grown Under Irrigation

Project objective: To assess the relative importance of fungicide input for Genesis 090 and PBA Monarch under overhead irrigation.

Location: Finley IRC Sown: 27 April Harvested: 11th December 2020 FAR Code: FAR CP20-07-1 Cultivar: Genesis 090 and PBA Monarch

Rotation position: Wheat (2019), Faba beans (2018), Fallow after Rice (2017) Soil Management: Cultivation with speed disc to incorporate stubble in Autumn Irrigation: Overhead lateral irrigation 6 x 25mm in spring. Total applied 150mm (1.5 ML/ha) GSR: April-October 244mm. Total water available (GSR + Irr) 394mm

Key Messages:

- Fungicide strategies for April sown chickpeas (mean of two cultivars) gave significant yield increases of 0.66t/ha (cheaper programme) and 0.98t/ha (more expensive programme) (mean of both cultivars) which represented a 26 & 38% increase in yield over the untreated.
- Disease levels, principally Ascochyta (Ascochyta rabiei) up to and including mid-flower were quite low (<1% leaf area infected LAI) and there were no differences due to cultivar or fungicide strategy.
- Genesis 090 had significantly more ascochyta infection 14 days after the last application of the 3rd fungicide at mid-flower than PBA Monarch, however this difference became insignificant 28 DAA.
- Both fungicide strategies gave significant improvements in control of ascochyta at 14 and 28 after the final application compared to nil control treatment and produced significant improvements in grain yield.
- There was no significant difference in ascochyta control however there was a significant difference in the subsequent grain yield between the 'cheap' and 'expensive' fungicide strategies.
- There was an increase in margin over input cost as a result of applying fungicide with the expensive fungicide treatment resulting in a higher return on investment compared to the cheap strategy.
- The WUE of the highest yielding Genesis 090 treated with an expensive fungicide strategy was 12.9kg/mm.

		Treatment mL/ha				
	Strategy	4-6 Node	Pre-Flower	Mid-Flower		
		V6 – 7-Jul	V18 – 26-Aug	R3 – 2-Oct		
1.	Untreated	-	-	-		
2.	Cheap	Chlorothalonil 720 @	Chlorothalonil 720 @	Chlorothalonil 720 @		
		1.4 L/ha	1.4 L/ha	1.4 L/ha		
3.	Expensive	Veritas @ 1 L/ha	Aviator Xpro @	Veritas @ 1 L/ha		
			600mL/ha			

Table 1. Fungicide treatment list.

Released:24 February 2021

MFMG

		Grain Yield				
		Genesis 090		PBA Monarch	Mean	
	Treatment	Yield t/ha		Yield t/ha	Yield t/ha	
1.	Untreated	2.51 -		2.29 -	2.40 c	
2.	Cheap	3.48 -		2.97 -	3.23 b	
3.	Expensive	3.67 -		3.43 -	3.55 a	
	Mean	3.22 -		2.90 -		
LSE) Cultivar p=0.05		ns	P val	0.095	
LSE) Fungicide p = 0.05		0.37	P val	< 0.001	
LSE) Fungicide x Cultivar	P=0.05	ns	P val	0.620	

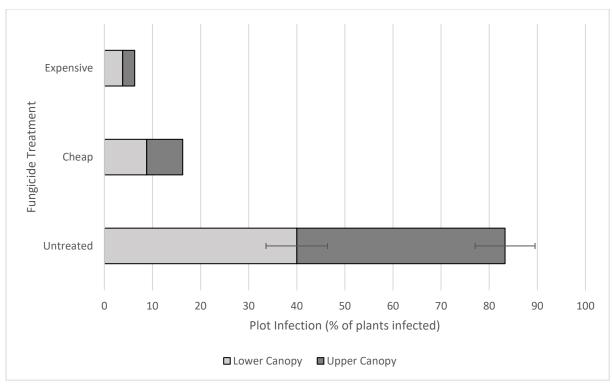
Table 2. Influence of fungicide strategy (based on three foliar sprays) on chickpea grain yield with 2 varieties.

Table 3. Influence of fungicide strategy (based on three foliar sprays) on margin over input cost (\$/ha - value of increased grain production minus cost of inputs and application costs).

Treatment	Total Fungicide Cost	Yield (t/ha)	Gross Income (\$/ha)	Margin gain (\$/ha)	Return on Investment
Untreated	Nil	2.40	\$1392	-	-
Cheap	\$98	3.23	\$1873	\$384	3.9
Expensive	\$132	3.55	\$2059	\$535	4.1

Input costs based on current chemical prices at 17/2/21 plus an application cost of \$15/ha. Income based on current grain price of \$615/t less \$35 freight as of 17/2/21.

Released:24 February 2021



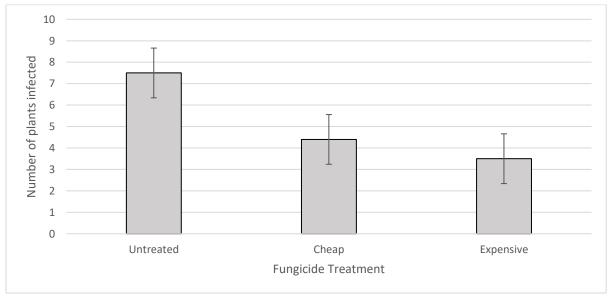
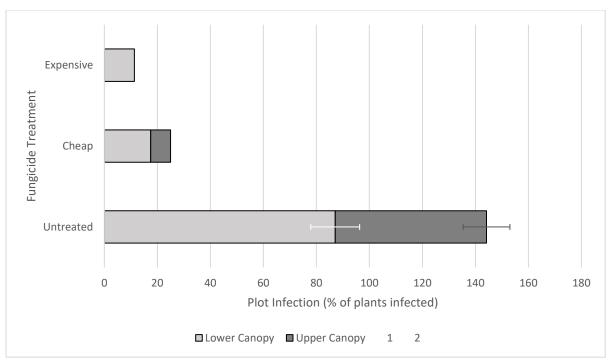


Figure 1. Influence of fungicide strategy on % Ascochyta infection (incidence) 14 days after 3rd fungicide application (15-Oct). Lower canopy P value – <0.001 LSD= 12.8, Upper canopy P value – <0.001 LSD= 12.7.

Figure 2. Influence of fungicide strategy on Sclerotinia infection (incidence) 14 days after 3rd fungicide application (15-Oct). P value – 0.007 LSD= 2.3.

Released:24 February 2021



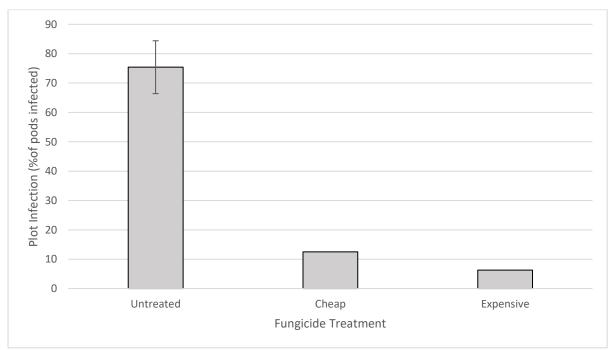


Figure 3. Influence of fungicide strategy on % Ascochyta infection (incidence) 28 days after 3rd fungicide application (5-Nov). Lower canopy P value <0.001, LSD= 18.4. Upper canopy P value <0.001, LSD= 17.6.

Figure 4. Influence of fungicide strategy on % Ascochyta infection of pods (incidence) 28 days after 3rd fungicide application (5-Nov). P value <0.001, LSD= 18.0.

Released:24 February 2021

cia

MFMG

The GRDC Optimising Irrigated Grains Project is a collaborative project including the following project partners:

Irrigation Research &

Extension Committee

RiverinePlains

Kerang VIC

Irrigated trials conducted at the Kerang irrigated research centre 2020 were managed by the Irrigated Cropping Council

Trial 1 Influence of Rhizobium Inoculation on Chickpea Yield and Profitability

Protocol Objective:

To evaluate the influence of different rhizobium treatments on chickpea nodulation, dry matter, grain yield and profitability under flood irrigation.

Location: Kerang, VictoriaFAR Code: ICC CP20-05-1Sown: 18 May 2020Cultivar: PBA RoyalHarvested: 24 December 2020Rotation position: Dryland vetch/brown manure 2019Soil Type: Neutral medium grey clayIrrigation: Flood irrigation 2 applications totalling 230mm (2.3 ML/ha)GSR: April-October 250mm. Total water available 480mm

Key Messages:

- Starting soil N levels were high (125 kg N/ha) due to the brown manured vetch phase prior to 2020.
- Chickpeas had not been grown in the trial location and inoculation did result in better nodulation of the chickpeas.
- Nodulation did improve with higher rates of granular inoculum.
- Yield and grain size were not influenced by the trial treatments, possibly due to the relatively high soil N and low reliance on fixed N for plant growth.

Table 1. Nodulation Scores 11 weeks post sowing.

Treatment	Nodulation Score
Nil (Control)	0.6 c
ALOSCA granules 10 kg/ha	2.7 b
ALOSCA granules 20 kg/ha	3.0 ab
ALOSCA granules 30 kg/ha80	3.3 a
N applied at Sowing 40 kg N/ha	0.7 c
N applied at Podding 40 kg N/ha	0.5 c
$n = 40.001$ and $= 0.41$ $m^{0}/ = 15.2$	

p = <0.001, lsd = 0.41, cv% = 15.2

Nodulation scoring as per the 2020 trials protocol methodology

Nodulation figures followed by different letters are considered to be statistically different (p=0.05)

There was an improvement in nodulation as the rate of granule was increased. However the higher rate of nodulation did not result in either higher biomass or grain yield.

Released:24 February 2021

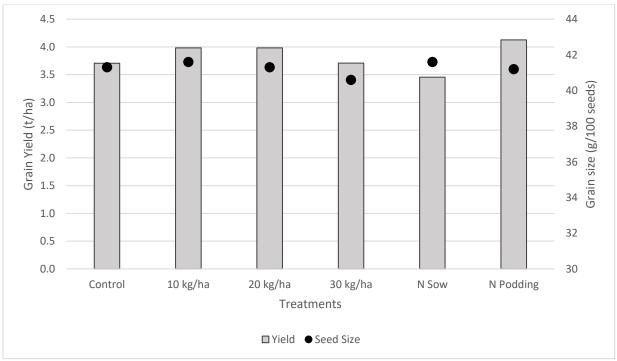


Table 2. Influence of inoculation on dry matter production at early flowering (21/9) and at harvest (24/12)

Treatment	Early Flowering	Harvest
Nil (Control)	4.00	10.97
ALOSCA granules 10 kg/ha	3.88	9.09
ALOSCA granules 20 kg/ha	3.95	11.95
ALOSCA granules 30 kg/ha	3.89	9.05
N applied at Sowing 40 kg N/ha	5.21	8.83
N applied at Podding 40 kg N/ha	4.62	11.5
P val	0.097	0.052
LSD	NS	NS
cv%	16.8	16.1

Figure 1. Influence of inoculation and N application on grain yield (t/ha) and grain size (g/100 seeds). Grain Yield: p = 0.068, lsd = NS, cv% = 8.0, trial mean = 3.83 t/ha Grain size: p = 0.362, lsd = NS, cv% = 1.7, trial mean = 41.3 g/100 seeds

Released:24 February 2021

MFMG

🚺 tia

The GRDC Optimising Irrigated Grains Project is a collaborative project including the following project partners:

FAI

Irrigation Research &

Extension Committee

RiverinePlains

Trial 2 Influence of Chickpea Cultivation on Durum Wheat Yield and Profitability

Protocol Objective:

To evaluate the influence of top work cultivation (speed till) in chickpea stubble on durum wheat yield and profitability in 2021. In 2020 the trial evaluated plant population in the previous chickpea crop.

Location: Kerang, VictoriaFAR Code: ICC CP20-06-1Sown: 12 May 2020Cultivar: Genesis 090Harvested: 24 December 2020Rotation position: Dryland vetch/brown manured 2019Soil Type: Neutral medium red clay, bordercheck.Irrigation: Flood irrigation 3 applications totalling 290mm (2.9 ML/ha)GSR: April-October 250mm. Total water available 540mm

Key Messages:

- Chickpea establishment rate was approximately 60% at seedrates between 15 45 seeds/m².
- The higher the seeding rate and resultant plant population, the trend was for higher dry matter at harvest and grain yield.
- Harvest index averaged 0.35 and was not affected by seeding rate/plant population.
- Based on the highest yields achieved at 27plants/m2 (4.56t/ha) WUE was 10.6kg/mm.

Trt.	Cultivation (2021)	Seed rate (Seeds/m2) (2020)
111.		Seed rate (Seeds/112) (2020)
1	Direct drill	15 seeds/m2
2	Direct drill	25 seeds/m2
3	Direct drill	35 seeds/m2
4	Direct drill	45 seeds/m2
5	Speed Till	15 seeds/m2
6	Speed Till	25 seeds/m2
7	Speed Till	35 seeds/m2
8	Speed Till	45 seeds/m2

Table 1. Trial treatment summary.

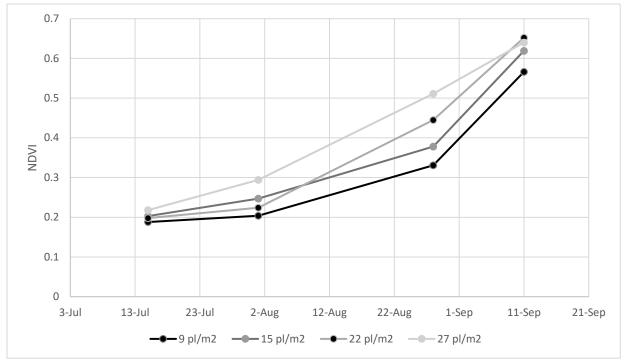
RiVerinePlains

 Table 2. Canopy measurements – plant populations (plants/m2) and harvest dry matter (t/ha).

Seeding rate	Plant population	Dry matter
15 seeds/m ²	8.8 d	9.13 c
25 seeds/m ²	15.0 c	10.03 bc
35 seeds/m ²	21.5 b	10.92 ab
45 seeds/m ²	26.8 a	11.66 a
P val	<0.001	0.019
LSD	1.68	1.617
CV%	11.2	18.6

Plant establishment was approximately 60% across the four seedrates evaluated (Table 2). Dry matter was highest in the high seeding rate treatments that established 27plants/m².

Released:24 February 2021



NDVI measurement during the season revealed differences between the canopies of each treatment, but there was no significant difference when measured on 11 September.

Figure 1. Influence of plant population on crop reflectance measured as NDVI (0 – 1 scale).

Seeding rate	Yield (t/ha)	Seed size	Harvest Index
15 seeds/m ²	3.44 c	30.5	0.35
25 seeds/m ²	3.76 bc	30.8	0.34
35 seeds/m ²	4.05 b	30.9	0.34
45 seeds/m ²	4.56 a	31.2	0.36
P val	<0.001	0.637	0.508
LSD	0.47	NS	NS
cv%	14.4	4.5	10.1

Table 3. Chickpea yield (t/ha) and grain size (g/100 seeds) and harvest index.

Grain yield mirrored seeding rate/plant population, with the highest yields achieved by the 45 seeds/m2 seeding rate treatment which established 27 plants/m². Plant population between 9 – 27 plants/m² did not influence either seed size or harvest index.

Released:24 February 2021

Trial 3 Disease Management Strategies for Chickpeas Grown Under Irrigation

Protocol Objective:

To evaluate the economics of disease management strategies of different costs in irrigated chickpea production.

Location: Kerang, VictoriaFAR Code: ICC CP20-07-2Sown: 18 May 2020Cultivar: PBA Monarch and Genesis 090Harvested: 24 December 2020Rotation position: Dryland vetch/brown manured 2019Soil Type: Neutral medium grey clay, bordercheck.Irrigation: Flood irrigation 2 applications totalling 210mm (2.1 ML/ha)GSR: April-October 250mm. Total water available 460mm

Key Messages:

- Yield of each variety was not influenced by the fungicide strategy.
- Seed size was increased in PBA Monarch only as a result of the 'cheap' strategy.
- Variety selection did result in differences in grain yield and size.
- Although the growing season was above average, much of this rainfall was prior to sowing. The winter period tended to be drier than average, resulting in conditions that did not favour disease. Coupled with the relatively few local crops, disease pressure was low and very little disease was evident in the trial.
- Neither the older Genesis 090 nor the new release PBA Monarch showed any differences in foliar disease expression given there was minimal disease pressure.
- Random plants across the trial did succumb to root rot prior to flowering.

TRT	Variety	Management	4-5 weeks	Pre-Flower	Late Flower
		Strategy	post emergence		
1	Genesis 090	Untreated*	-	-	-
2	Genesis 090	Cheap	Chlorothalonil 720 1 l/ha	Chlorothalonil 720 1 l/ha	Chlorothalonil 720 1 l/ha
3	Genesis 090	Expensive	Veritas 1l/ha	Aviator Xpro 600ml/ha	Veritas 1l/ha
4	PBA Monarch	Untreated*	-	-	-
5	PBA Monarch	Cheap	Chlorothalonil 720 1 l/ha	Chlorothalonil 720 1 l/ha	Chlorothalonil 720 1 l/ha
6	PBA Monarch	Expensive	Veritas 1l/ha	Aviator Xpro 600ml/ha	Veritas 1l/ha

Table 1. Trial treatment summary.

The plant canopy was assessed for disease prior to each fungicide application. Very low levels of foliar disease was recorded at the early podding stage of the trial in the lower canopy irrespective of fungicide treatment. Disease did not progress up the canopy as the season continued.

Released:24 February 2021

	Grain	Grain Yield		Grain Size		
Treatment	PBA Monarch	Genesis 090	PBA Monarch	Genesis 090		
Untreated (Control)	3.37 -	4.17 -	40.3 -	30.9 -		
'Cheap'	3.52 -	4.88 -	41.8 -	31.5 -		
Expensive	3.60 -	4.53 -	40.7 -	31.8 -		
Mean	3.50 b	4.53 a	40.9 a	31.4 b		
Yield: p var = <0.001, p fung = 0.256 p vxf = 0.516, lsd var = 0.441, lsd fung = NS lsd vxf = 0.76, cv% = 12.6						
Grain size: p _{var} = <0.001	L, p _{fung} = 0.089, p _{vxf} =	0.516, lsd _{var} = 0.7	'83, Isd _{fung} = NS Isd	_{vxf} = 1.36, cv% =		
		2.5				

Table 2. Chickpea yield (t/ha) and grain size (g/100 seeds).

The trial mean yield was 3.8 t/ha. WUE was 9.3 kg/mm.

Released:24 February 2021

Griffith NSW

Irrigated trials conducted at the Griffith irrigated research centre 2020 were managed by the Irrigated Cropping Council in collaboration with IREC

Trial 1 Influence of Rhizobium Inoculation on Chickpea Yield and Profitability

Protocol Objective:

To evaluate the influence of different rhizobium treatments on chickpea nodulation, dry matter, grain yield and profitability under irrigation.

Location: Whitton, NSW Sown: 29 May 2020 Harvested: 22 December 2020 Rotation position: Cotton 19/20 Soil Type: Neutral red clay loam, 150 cm beds Irrigation: Nil GSR: April-October 297mm FAR Code: ICC CP20-05-2 Cultivar: PBA Royal

Key Messages:

- Starting soil N levels were 85 kg N/ha (0-60 cm) at sowing.
- Chickpeas had been grown in the trial location 5 years prior, and all treatments did have nodules when assessed 10 weeks after sowing.
- The higher inoculum rates of 20 and 30 kg/ha did result in higher nodulation scores than that of the untreated control.
- Yield and grain size were not influenced by the trial treatments.

Table 1. Nodulation Scores 10 weeks post sowing.

Treatment	Nodulation Score
Nil (Control)	2.15 b
ALOSCA granules 10 kg/ha	2.65 ab
ALOSCA granules 20 kg/ha	2.80 a
ALOSCA granules 30 kg/ha80	3.0 a
N applied at Sowing 40 kg N/ha	1.85 b
N applied at Podding 40 kg N/ha	1.93 b
p = 0.004 lsd = 0.61 cv% = 16.9	

p = 0.004, isd = 0.61, cv% = 16.9

Nodulation scoring as per the 2020 trials protocol methodology

Nodulation figures followed by different letters are considered to be statistically different (p=0.05)

There was an improvement in nodulation as the rate of granule was increased. However the higher rate of nodulation did not result in either higher biomass or grain yield.

Released:24 February 2021

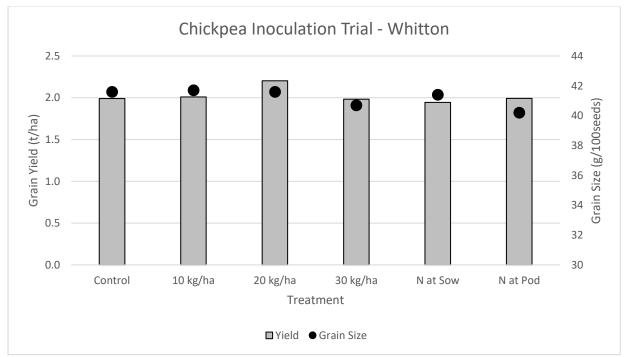


Table 2. Influence of inoculation on dry matter production at early flowering (21/9) and at harvest (24/12).

Treatment	Early Flowering	Harvest
Nil (Control)	2.15 b	5.05
ALOSCA granules 10 kg/ha	2.65 ab	5.07
ALOSCA granules 20 kg/ha	2.80 a	5.40
ALOSCA granules 30 kg/ha	3.00 a	5.40
N applied at Sowing 40 kg N/ha	1.85 b	4.79
N applied at Podding 40 kg N/ha	1.93 b	5.18
P val	0.004	0.614
LSD	0.612	NS
cv%	16.9	10.6

Figure 1. Grain yield (t/ha) and grain size (g/100 seeds). Grain Yield: p = 0.795, lsd = NS, cv% = 13.3, trial mean = 2.02 t/ha Grain size: p = 0.770, lsd = NS, cv% = 4.1, trial mean = 41.2 g/100 seeds

The trial was planned to be irrigated but well-above average April rainfall (106mm) on the back of a summer crop and predictions of a wetter season discouraged the co-operator from pre-irrigation. He decided the spring rainfall was sufficient, therefore unnecessary for any spring irrigation.

Released:24 February 2021

Released:24 February 2021

The GRDC Optimising Irrigated Grains Project is a collaborative project including the following project partners:

55 | Page

Trial 2 Disease Management Strategies for Chickpea Growth Under Irrigation

Protocol Objective:

To evaluate the economics of disease management strategies of different costs in irrigated chickpea production.

Location: Whitton, NSW Sown: 29 May 2020 PBA Monarch and Genesis 090 Harvested: 22 December 2020 Rotation position: Cotton 19/20 Soil Type: Neutral red clay loam, 150 cm beds Irrigation: Nil GSR: April-October 297mm

FAR Code: ICC CP20-07-3 Cultivar: PBA Monarch and Genesis 090

Key Messages:

- Yield and was not influenced by the trial treatments, neither fungicide strategy nor variety selection.
- Variety selection did result in a larger grain size.
- Although the growing season was above average, much of this rainfall was prior to sowing. The winter period tended to be drier than average, resulting in conditions that did not favour disease. Coupled with the relatively few local crops, disease pressure was low and very little disease was evident in the trial.
- Neither the older Genesis 090 nor the new release PBA Monarch showed any differences in disease expression given there was minimal disease pressure.
- Overall yields were suppressed by the co-operators decision to not irrigate in early spring.

TRT	Variety	Management	4-5 weeks	Pre-Flower	Late Flower
		Strategy	post emergence		
1	Genesis 090	Untreated*	-	-	-
2	Genesis 090	Cheap	Chlorothalonil 720 1 l/ha	Chlorothalonil 720 1 l/ha	Chlorothalonil 720 1 l/ha
3	Genesis 090	Expensive	Veritas 1l/ha	Aviator Xpro 600ml/ha	Veritas 1l/ha
4	PBA Monarch	Untreated*	-	-	-
5	PBA Monarch	Cheap	Chlorothalonil 720 1 l/ha	Chlorothalonil 720 1 l/ha	Chlorothalonil 720 1 l/ha
6	PBA Monarch	Expensive	Veritas 1l/ha	Aviator Xpro 600ml/ha	Veritas 1l/ha

Table 1: Trial treatment summary.

RiverinePlains

* Untreated received a fungicide application as part of a herbicide application on July 15 by the co-operator

The plant canopy was assessed for disease prior to each fungicide application. No foliar disease was recorded at any stage of the trial.

	Grain Yield		Grain Size		
Treatment	PBA Monarch	Genesis 090	PBA Monarch	Genesis 090	
Untreated (Control)	1.82	1.90	40.5 a	32.7 b	
'Cheap'	1.96	1.96	40.8 a	33.2 b	
Expensive	2.11	1.84	40.5 a	32.5 b	
Mean	1.9 -	1.90 -	40.6 a	32.8 b	
Yield: p _{var} = 0.427, p _{fung} = 0.458 p _{vxf} = 0.207, lsd _{vxf} = NS, cv% = 10.1					
Grain size: p _{var} = <0.001, p _{fung} = 0.784, p _{vxf} = 0.570, lsd _{vxf} = 2.45, cv% = 10.1					

Table 2. Chickpea yield (t/ha) and grain size (g/100 seeds)

Trial mean yield was 1.9 t/ha. WUE was 6.5 kg/mm (excluding soil moisture at sowing).

The trial was planned to be irrigated but well-above average April rainfall (106mm) on the back of a summer crop and predictions of a wetter season discouraged the co-operator from pre-irrigation. He decided the spring rainfall was sufficient, therefore unnecessary for any spring irrigation.

Released:24 February 2021

Optimising Irrigated Grains (FAR1906-003RTX) A Grains Research & Development Corporation (GRDC) investment

PROVISIONAL HARVEST RESULTS:

Irrigated Durum Wheat Trials

Released:24 February 2021

Finley Irrigated Research Centre NSW

Irrigated trials conducted at the Finley irrigated research centre 2020 were managed by FAR Australia, hosted by Southern Growers.

Trial 1 Optimum Plant Population Under Overhead Irrigation

Protocol objective: Assess the performance of durum grown at different plant populations under overhead irrigation

Location: Finley IRCFAR Code: FAR D20-01-1Sown: 19 MayCultivar: DBA Aurora and DBA VittaroiHarvested: 29th November 2020Rotation position: Fallow (2019), Faba beans (2018), Wheat (2017)Soil Management: Cultivation with speed disc in AutumnIrrigation: Overhead lateral Irrigation 5 x 25mm in spring. Total applied 125mm (1.25 ML/ha)GSR: April-October 244mm. Total water available 369mm

Key Messages:

- In a first wheat scenario following fallow in 2019 durum wheat yielded between 7.07 7.52t/ha with no significant difference in yield due to variety (DBA Aurora and DBA Vittaroi).
- With 19 May sowing there was no difference in yield from plant populations that varied from approximately 100 300 plants/m², although 150 200 plants/m² were associated with the highest yields in both varieties.
- As plant population increased with DBA Aurora it was associated with significantly more lodging. There was no lodging in DBA Vittaroi irrespective of plant population.
- There was significantly more tiller production at the highest plant populations tested (525-660 tillers/m² but it had no significant yield benefit in either cultivar.
- In DBA Aurora there was no significant difference in head numbers as a result of increasing plant population, although the trend suggested lower head numbers with lower populations.
- Although increasing plant population significantly increased dry matter production at pseudo stem erect (GS30) lower plant populations had compensated such that there was no difference when assessed at the start of grain fill (GS71) and harvest.
- Plant population had no significant effect on grain protein (range 13.4-14.5%) which averaged 13.9%
- DBA Aurora at 13.5% had significantly less grain protein than DBA Vittaroi at 14.3%.

Durum wheat sown on 19 May produced yields of approximately 7 – 7.5t/ha (Table 1). Despite the production of higher biomass and tiller numbers earlier in the spring there was no significant difference in yield as a result of populations between approximately 100 – 300plants/m² (Table 2 & 3). Lodging during grain fill significantly increased with higher plant populations when growing DBA Aurora (Table 4).

Released:24 February 2021

			Yield			Proteir	n
Plants/m ²	(actual)	Aurora	Vittaroi	Mean	Aurora	Vittaroi	Mean
Aurora	Vittaroi	t/ha	t/ha	t/ha	%	%	%
110	90	7.04 -	7.07 -	7.06 -	13.4 -	14.2 -	13.8 -
166	178	7.30 -	7.25 -	7.27 -	13.5 -	14.3 -	13.9 -
191	231	7.52 -	7.13 -	7.32 -	13.5 -	14.5 -	14.0 -
322	308	7.23 -	7.10 -	7.16 -	13.5 -	14.1 -	13.8 -
Mean		7.27 -	7.14 -		13.5 b	14.3 a	
LSD Cultiv	ar p=0.05		ns			0.39	
P val		0.175 0.007					

Table 1. Influence of seed rates (plant population) on grain yield (t/ha) with two different varieties grown under overhead irrigation.

LSD Cultivar p=0.05	ns	0.39
P val	0.175	0.007
LSD Seed Rate p=0.05	ns	ns
P val	0.221	0.303
LSD Seed Rate x Cultivar. P=0.05	ns	ns
P val	0.441	0.421

Table 2. Influence of plant population on canopy composition, plants/m² (GS21), tillers/m² (GS31) and heads/m² (GS87) – assessed GS21 (29 Jun), GS31 (13 Aug), GS87 (20 Nov).

Treatment		Canopy composition	
	Plants/m ²	Tillers/m ²	Heads/m ²
DBA Aurora			
100 seeds/m ²	110 -	510 bc	345 -
200 seeds/m ²	166 -	537 b	387 -
300 seeds/m ²	191 -	552 b	441 -
400 seeds/m ²	322 -	661 a	447 -
DBA Vittaroi			
100 seeds/m ²	90 -	333 d	
200 seeds/m ²	178 -	442 c	
300 seeds/m ²	231 -	535 b	
400 seeds/m ²	308 -	526 b	
Mean	200	512	405
LSD Seed Rate x Cultivar. P=0.05	ns	73	79
P val	0.104	0.028	0.052

In depth assessment of DBA Aurora showed that high plant populations produce significantly more vegetative biomass up to GS30 but whilst the trend continued at later growth stages the differences were not statistically significant (Figure 1).

Released:24 February 2021

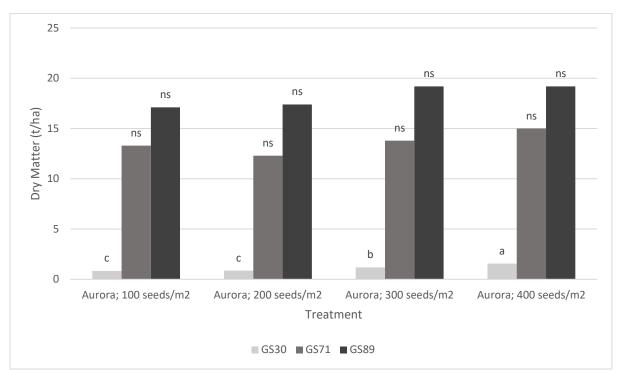


Figure 1. Influence of plant population on dry matter production (t/ha) at GS30, GS71 and harvest - assessed 31 July, 13 Oct, 20 Nov – cv DBA Aurora. GS30 P value=<0.001, LSD=0.22. GS71 P value=0.272. GS89 P value=0.211.

Treatment		Lodging Score (0-500)
	GS80	GS87	Harvest
DBA Aurora			
110 plants/m ²	0 -	11 -	39 c
166 plants/m ²	4 -	79 -	114 b
191 plants/m ²	33 -	115 -	171 b
322 plants/m ²	22 -	183 -	244 a
DBA Vittaroi			
90 plants/m ²	0 -	0 -	0 с
178 plants/m ²	0 -	0 -	0 с
231 plants/m ²	0 -	0 -	0 с
308 plants/m ²	0 -	0 -	0 с
Mean	7	49	71
LSD Seed Rate x Cultivar. P=0.05	36	90	63
P val	0.526	0.071	0.001

Table 3. Influence of plant population on crop lodging assessed by combining severity and % plotlodged on 0 - 500 scale at grain fill GS80, GS87 and harvest – (4 Nov, 17 Nov, 29 Nov)

Released:24 February 2021

MFMG

la tia

Trial 2 Optimum Plant Population Under Flood Irrigation

Protocol objective: Assess the performance of durum grown at different plant populations under flood irrigation

Location: Finley IRCFAR Code: FAR D20-01-2Sown: 19 MayCultivar: DBA Aurora and DBA VittaroiHarvested: 29th November 2020Rotation position: Fallow (2019), Faba beans (2018), Wheat (2017)Soil Management: Cultivation with speed disc in AutumnIrrigation: Flood Irrigation 3 x 80mm in spring. Total applied 240mm (2.4 ML/ha)GSR: April-October 244mm. Total water available 484mm

Key Messages:

- In an identical trial to Trial 1 under flood bay irrigation DBA Aurora lodged severely and was significantly lower yielding than DBA Vittaroi.
- Though not statistically comparable (separate trials based on same site, same sowing date & management) yields were similar under overhead and flood irrigation but lodging at harvest was noted to be more severe where flood irrigation was used.
- DBA Aurora lodged significantly more at higher plant populations (150-300 plants/m²) and was noted to start lodging earlier in grain fill (GS71). At harvest all plots of the variety had lodged irrespective of plant population.
- In contrast, lower levels of lodging were observed with DBA Vittaroi through grain fill, but yield trends suggested high plant populations were not advantageous.
- Lower plant populations were associated with lower dry matter production at early stem elongation (GS31) but later in the growing season there were no significant dufferences.
- Neither plant population or variety had any significant effect on grain protein (range 13.4-13.7%) which averaged 13.6%.

Higher plant populations, tiller numbers and early dry matter production resulting from higher plant populations grown under flood irrigation produced no yield advantage (Table 1).

Released:24 February 2021

			Yield t/h	а		Protein	
Plants/m2	(actual)	Aurora	Vittaroi	Mean	Aurora	Vittaroi	Mean
Aurora	Vittaroi	t/ha	t/ha	t/ha	%	%	%
90	86	7.01 -	8.20 -	7.6 a	13.6 -	13.6 -	13.6 -
161	183	6.93 -	7.73 -	7.3 ab	13.4 -	13.8 -	13.6 -
240	230	6.54 -	7.60 -	7.0 bc	13.4 -	13.8 -	13.6 -
282	315	6.46 -	7.21 -	6.8 c	13.4 -	13.6 -	13.5 -
Mean		6.73 b	7.69 a		13.4 -	13.7 -	

Table 1. Influence of seed rates (plant population) on grain yield (t/ha) with two different varieties grown with flood irrigation.

LSD Seed Rate p = 0.05	0.44	ns
P val	0.011	0.752
LSD Cultivar p=0.05	0.67	ns
P val	0.021	0.270
LSD Seed Rate x Cultivar.	ns	ns
P=0.05		
P val	0.692	0.390

Table 2. Influence of plant population and variety on canopy composition, plants/m² (GS21), tillers/m² (GS31) and heads/m² (GS87) – assessed GS21 (29 Jun), GS31 (13 Aug), GS87 (24 Nov).

Treatment	C	anopy composition (m	²)
	Plants/m ²	Tillers/m ²	Heads/m ²
DBA Aurora			
90 plants/m ²	90 -	588 c	420 -
161 plants/m ²	161 -	693 b	451 -
240 plants/m ²	240 -	786 a	468 -
282 plants/m ²	282 -	829 a	468 -
DBA Vittaroi			
86 plants/m ²	86 -	385 d	
183 plants/m ²	183 -	642 bc	
230 plants/m ²	230 -	639 bc	
315 plants/m ²	315 -	680 b	
Mean	198	655	452
LSD Seed Rate x Cultivar. P=0.05	ns	62	ns
P val	0.455	0.014	0.410

Released:24 February 2021

Treatment	Dr	y Matter Production (kg	/ha)	
	GS30	GS71	GS87	
90 plants/m ²	0.62 b	13.14 -	18.36 -	
161 plants/m ²	0.91 b	14.25 -	17.66 -	
240 plants/m ²	1.31 a	14.10 -	15.99 -	
282 plants/m ²	1.41 a	13.98 -	19.05 -	
Mean	1.06	13.9	17.76	
LSD Seed Rate P=0.05	0.343	ns	ns	
P val	0.002	0.5121	0.1746	

Table 3. Influence of plant population on dry matter production (kg/ha) at pseudo stem erect (GS30), watery ripe (GS71) and crop maturity (GS87) - assessed GS30 (31 July), GS71 (13 Oct), GS87 (24 Nov) cv. DBA Aurora.

Table 4. Influence of plant population on crop lodging assessed during grain fill GS71, GS80 and at harvest – (15 Oct, 4 Nov and 29 Nov respectively).

Treatment	Lodging Score (0-500)					
	GSZ	71	GS	30	Harvest	
DBA Aurora						
90 plants/m ²	11	d	179	С	326 -	
161 plants/m ²	86	ab	304	ab	413 -	
240 plants/m ²	68	bc	280	b	396 -	
282 plants/m ²	125	а	364	а	445 -	
DBA Vittaroi						
86 plants/m ²	0	d	0	d	15 -	
183 plants/m ²	26	cd	38	d	83 -	
230 plants/m ²	33	cd	41	d	73 -	
315 plants/m ²	15	d	39	d	74 -	
Mean	46	5	15	6	228	
LSD	49)	63	3	ns	
P val	0.04	46	0.0	21	0.605	

Released:24 February 2021

Trial 3 Nitrogen Use Efficiency Trial – Nitrogen Rates

Project Objective: To assess the impact of nitrogen (N) rate on durum wheat under overhead irrigation.

Location: Finley IRC Sown: 19 May Harvested: 29th November 2020 FAR Code: FAR D20-03-1 Cultivar: DBA Vittaroi

Rotation position: Fallow (2019), Faba beans (2018), Wheat (2017)

Soil Management: Cultivation with speed disc in Autumn

Irrigation: Overhead lateral Irrigation 5 x 25mm in spring. Total applied 125mm (1.25 ML/ha) **GSR:** April-October 244mm. Total water available 369mm

Key Messages:

- Deep soil N cores taken prior to sowing revealed approximately 100kg N/ha in the top 30cm and 232kg N/ha in a profile as a whole (0 90cm) following fallow in 2019.
- With this level of fertility under overhead irrigation DBA Vittaroi gave no significant yield response to N fertiliser at levels between 0 – 350kg N/ha with yields ranging from 6.93 – 7.43t/ha.
- Grain protein content was significantly increased by stem elongation N application up to a level of 150kg N/ha applied, moving protein from 13% to 14.5%.
- Above 150 kg N/ha applied there was no effect of increasing N input on grain protein.
- Nitrogen application rate had no significant effect on dry matter (DM) production assessed at harvest with an average DM of 16.6t/ha (range 15.96 17.97t/ha).
- Applying nitrogen at GS39 had no significant effect on grain protein and the small lift in grain yield (recorded at 300kg N/ha) was not statistically significant.
- Nitrogen offtake in the crop canopy varied from 246 384kg N/ha as applied N increased, this trend was strong but not significant (p=0.07).
- The unfertilised crop removed 264kgN/ha in the canopy indicating an additional 32 kg N/ha supplied through mineralisation (232kg N/ha at sowing).
- There was no significant difference in harvest index (proportion of DM harvested as grain) due to nitrogen rate.

In a scenario of high soil fertility increasing applied N rates (Urea 46% N) from 0 - 350 kg N/ha had no significant effect on grain yield but was noted to increase grain protein up to 150 kg N/ha applied (Table 1).

Released:24 February 2021

	Applica	tion Timing			Gr	ain yield and qua	lity
	GS30	GS32	GS39	Total	Yield	Protein	H.I.
	Kg N/ha	Kg N/ha	Kg N/ha	kg N/ha	t/ha	%	%
1.	-	-	-	0	7.10 -	13.0 c	45.3 -
2.	50	50	-	100	7.17 -	13.9 b	41.4 -
3.	75	75	-	150	6.93 -	14.5 ab	43.6 -
4.	100	100	-	200	6.97 -	14.4 ab	44.2 -
5.	125	125	-	250	6.96 -	14.8 a	43.3 -
6.	150	150	-	300	7.05 -	14.9 a	42.5 -
7.	100	100	100	300	7.43 -	14.5 ab	43.7 -
8.	125	125	100	350	7.11 -	15.0 a	39.7 -
	Mean				7.09	14.37	43.0
	LSD				0.33	0.7	ns
	P val				0.087	<0.001	0.396

Table 1. Influence of applied nitrogen rate at stem elongation on Grain yield (t/ha) and Protein content (%).

The starting soil nitrogen for the research site was high following fallow in 2019 and a failed faba bean crop in 2018. This resulted in a high level of soil mineral N being available to the trial on the date of sowing seven days later.

Soil Available Mineral N kg N/ha – recorded on 12th May

0 – 30cm	110
30 - 60cm	71
60 – 90cm	51
Total 0-90cm	232

Released:24 February 2021

Table 2. Influence of applied nitrogen rate at GS30, GS32 & GS39 on dry matter (DM) kg/ha and N offtake (kg N/ha) in grain at harvest.

Nitro	ogen Treatment Rate & Timing	Total	Dry matter 8	& N offtake
		Nitrogen	Dry Matter	N removed
		N/ha	Kg/ha	Kg N/ha
1.	0 kg N/ha	0	15.96 -	261 -
2.	50 kg N/ha @ GS30 & 50 kg N/ha @ GS32			
		100	17.37 -	246 -
3.	75 kg N/ha @ GS30 & 75 kg N/ha @ GS32			
		150	15.93 -	278 -
4.	100 kg N/ha @ GS30 & 100 kg N/ha @			
	GS32	200	15.76 -	269 -
5.	125 kg N/ha @ GS30 & 125 kg N/ha @			
	GS32	250	16.12 -	347 -
6.	150 kg N/ha @ GS30 & 150 kg N/ha @			
	GS32	300	16.66 -	360 -
7.	100 kg N/ha @ GS30, 100 kg N/ha @ GS32			
	& 100 kg N/ha @ GS39	300	17.08 -	384 -
8.	125 kg N/ha @ GS30, 125 kg N/ha @ GS32			
	& 100 kg N/ha @ GS39	350	17.97 -	307 -
	Mean		16.61	
	LSD		ns	
	P val		0.259	

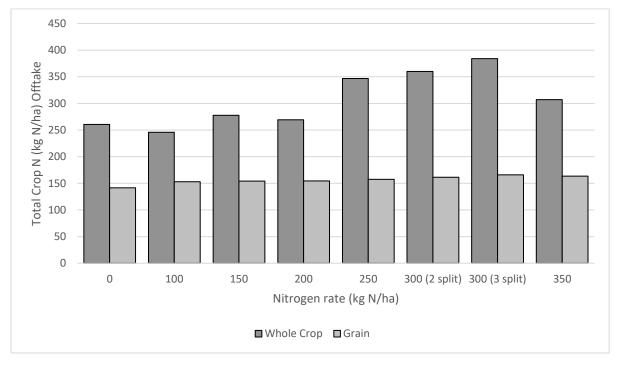


Figure 1. Nitrogen removed in the whole crop and grain when varying nitrogen rate.

RiverinePlains

Released:24 February 2021

MFMG

s tia

Water Use Efficiency (WUE)

Table 3. Maximum biomass (dry matter) at harvest, Grain yield t/ha, Harvest index (%), Water use efficiency (based on grain yield kg/ha divided by GSR mm, Irrigation mm & 30% stored Jan-March), Transpiration (mm), Estimated soil evaporation/other soil losses (mm) & Transpiration efficiency T.E. (seed) kg/mm (mean of both openers) - cv Hyola 50, Coreen, NSW.

N Rate	Dry Matter	Yield	H.I.	WUE ¹	Trans ²	Evap ³	T.E⁴
(kg N/ha)	Kg/ha	Kg/ha	%	Kg/mm	mm	Mm	mm
0	15960	6213	38.9	14.9	290	127	21.4
150	15930	6064	38.1	14.5	290	127	20.9
250	16120	6090	37.8	14.6	293	127	20.8
350	17970	6221	34.6	14.9	327	124	19.0

¹ Based on 244mm of GSR (Apr – Oct) plus 125mm irrigation and 30% of January – March rainfall as stored (48.3 mm) with no soil evaporation term included. Total 417.3mm of water available.

² Transpiration through the plant based on a maximum 55 kg biomass/ha.mm transpired.

³ Difference between transpiration through the plant and GSR (mm).

⁴ kg/ha grain produced per mm of water transpired through the plant.

Released:24 February 2021

Trial 4 Nitrogen Use Efficiency Trial – Nitrogen Timing Trial

Project Objective: To assess the impact of nitrogen (N) timing on durum wheat under overhead irrigation

Location: Finley IRCFAR Code: FAR D20-04-1Sown: 19 MayCultivar: DBA VittaroiHarvested: 29th November 2020Rotation position: Fallow (2019), Faba beans (2018), Wheat (2017)Soil Management: Cultivation with speed disc in AutumnIrrigation: Overhead lateral Irrigation 5 x 25mm in spring. Total applied 125mm (1.25 ML/ha)

GSR: April-October 244mm. Total water available 369mm

Key Messages:

- In this fertile scenario (232kg N/ha available 0-90cm) there was a significant interaction (p=0.03) between applied nitrogen timing and rate which suggested that increasing nitrogen had no negative yield effects when applied later in stem elongation compared to earlier N timings of the same amounts.
- However, the only benefit of applied nitrogen in the trial was significantly lifting grain protein from below 13% (12.36% mean) in zero N plots to 13.63% in those plots where 100kg N/ha was applied.
- The input of N fertiliser at \$1.20kg N/ha was not economic in this trial, despite the premium differential due to protein (based on \$19/t differential).
- Whilst applied nitrogen at 300kg N/ha significantly increased protein above 14% compared to lower levels of applied N this effect was uneconomic.
- There was an indication that N content of the canopy varied with N rate and timing at harvest with content varying from 250 -365 kg N/ha.
- N removal
- Applying higher rates of nitrogen had a significant impact on crop reflectance assessed as normalised differential vegetation index (NDVI) at early stem elongation, booting and flowering

With high levels of available mineral N at sowing (232kg N/ha 0 -90cm) there was no economic yield or protein response to applied N fertiliser (Urea 46%N) (Table 1).

Released:24 February 2021

		Nitro		1	-					
		Nitrogen Application Rate								
0kg/h	a N	100kg	/ha N	200kg	/ha N	300kg	;/ha N			
Yield t/ha		Yield	Yield t/ha		Yield t/ha		t/ha			
7.25	а-е	7.43	abc	7.06	cde	7.16	b-e			
7.54	а	6.89	е	6.97	de	7.09	cde			
7.33	a-d	7.48	ab	7.50	ab	7.36	abc			
7.37	-	7.27	-	7.18	-	7.20	-			
LSD N Application Timing p=0.05		ns		P va	al	0.1	87			
LSD N Application Rate p=0.05		ns	ns		P val		92			
P=0.05		0.38		P va	al	0.033				
	Yield 1 7.25 7.54 7.33 7.37	7.25 a-e 7.54 a 7.33 a-d 7.37 - 95 p=0.05	Yield t/ha Yield 7.25 a-e 7.43 7.54 a 6.89 7.33 a-d 7.48 7.37 - 7.27 og p=0.05 ns ns	Yield t/ha Yield t/ha 7.25 a-e 7.43 abc 7.54 a 6.89 e 7.33 a-d 7.48 ab 7.37 - 7.27 - ag p=0.05 ns ns	Yield t/ha Yield t/ha Yield 7.25 a-e 7.43 abc 7.06 7.54 a 6.89 e 6.97 7.33 a-d 7.48 ab 7.50 7.37 - 7.27 - 7.18 ag p=0.05 ns P va P va	Yield t/ha Yield t/ha Yield t/ha 7.25 a-e 7.43 abc 7.06 cde 7.54 a 6.89 e 6.97 de 7.33 a-d 7.48 ab 7.50 ab 7.37 - 7.27 - 7.18 - ag p=0.05 ns P val P val P val	Yield t/ha Yield t/ha Yield t/ha Yield t/ha Yield 7.25 a-e 7.43 abc 7.06 cde 7.16 7.25 a-e 7.43 abc 7.06 cde 7.16 7.54 a 6.89 e 6.97 de 7.09 7.33 a-d 7.48 ab 7.50 ab 7.36 7.37 - 7.27 - 7.18 - 7.20 r r r r 0.1 0.1 p=0.05 ns P val 0.1			

Table 1. Influence of N rate and timing strategies on grain yield (t/ha) based on split application rates (0 - 300 kg N/ha).

PSPE – Post sow pre-emergence application - broadcast

In addition to N rates specified a standard MAP application meant that all treatments received 12 kg N/ha at sowing.

Table 2. Influence of N rate and timing strategies on grain protein (%) based on split application rates (0 - 300 kg N/ha).

		Nitrogen Application Rate									
	0kg/ha N	100kg/ha N	200kg/ha N	300kg/ha N							
Nitrogen Timing	Protein %	Protein %	Protein %	Protein %	Mean						
PSPE & GS30	12.7 de	13.5 c	13.4 cd	14.1 abc	13.4 -						
GS30 & GS32	12.7 e	13.5 c	13.9 bc	14.5 ab	13.6 -						
GS32 & GS37	11.7 f	13.8 bc	14.3 ab	14.8 a	13.6 -						
Mean	12.4 c	13.6 b	13.8 b	14.4 a							
LSD N Application Tir	ning p=0.05	ns		P val	0.703						
LSD N Application Ra	te p=0.05	0.46		P val							
LSD N Timing. x N Ra	0.80		P val	0.030							

Table 3 Influence of N rate and timing strategies on N removal kg N/ha at harvest.

	Nitrogen removed at harvest (kg N/ha)							
	0kg/ha	Ν	100kg/	ha N	200kg/l	na N	300kg/h	na N
Nitrogen Timing								
PSPE & GS30	270	cde	324	abc	365	а	336	ab
GS30 & GS32	298	b-e	251	е	260	е	296	b-e
GS32 & GS37	266	de	320	a-d	287	b-e	319	a-d
Mean	278	-	298	-	304	-	317	-
LSD N Application Timing p = 0.05			39		P val		0.067	,
LSD N Application Rate p=0.05		ns		P val		0.111		
LSD N Timing. x N Rate.	P=0.05		55		P val		0.028	}

Released:24 February 2021

MFMG

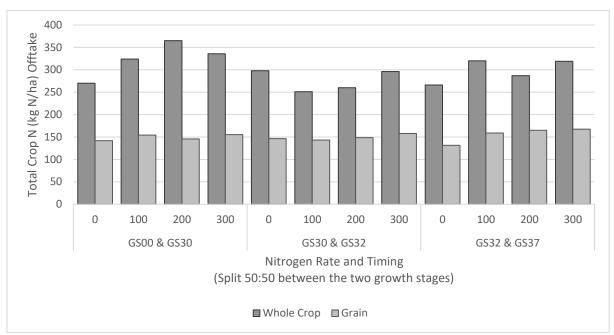

la Cia

Figure 1. Influence of N rate and timing on nitrogen offtake in the crop canopy at harvest kg N/ha (straw and grain) – cv DBA Vittaroi.

Small but significant differences were observed in crop reflectance (Table 4) which indicated greener canopies where higher N rates were applied. However, overall the differences though significant are extremely small (Table 4).

 Table 4. Influence of N rate (kg N/ha) on crop reflectance assessed as normalised differential vegetation index (NDVI) assessed 0 -1 scale. *Higher figures are indicative of greener canopies.*

		NDVI		
	GS32 (26 Aug)	GS43 (14 Sep)	GS61 (29 Sep)	
Nitrogen Rate				
0 kg N/ha	0.790 c	0.814 b	0.813 b	
100 kg N/ha	0.793 bc	0.814 b	0.815 b	
200 kg N/ha	0.802 ab	0.822 a	0.824 a	
300 kg N/ha	0.805 a	0.821 ab	0.823 a	
Mean	0.798	0.815	0.818	
LSD	0.010	0.007	0.007	
P val	0.017	0.045	0.003	

Released:24 February 2021

Trial 5 Germplasm Disease Management Interaction

Project objective: To assess the relative importance of fungicide input for DBA Aurora and DBA Vittaroi under overhead irrigation

Location: Finley IRCFAR Code: FAR D20-07-1Sown: 19 MayCultivar: DBA Aurora and DBA VittaroiHarvested: 29th November 2020Rotation position: Fallow (2019), Faba beans (2018), Wheat (2017)Cultivar: DBA Aurora and DBA Vittaroi

Soil Management: Cultivation with speed disc in Autumn

Irrigation: Overhead lateral Irrigation 5 x 25mm in spring. Total applied 125mm (1.25 ML/ha) **GSR:** April-October 244mm. Total water available 369mm

Key Messages:

- DBA Vittaroi developed higher levels of stripe rust infection than DBA Aurora (20% v less than1% on flag leaf at late grain fill)
- Fungicide strategy had no significant effect on grain protein (range 13.4-14.8%) which averaged 14.0% (not shown)
- DBA Aurora at 13.5% had significantly less grain protein than DBA Vittaroi at 14.5% (not shown)

Table 1. Fungicide treatment list.

		Treatment mL/ha								
	Treatment	At sowing	GS31	GS39	GS61					
		19 May	3 Aug	1 Sep	2 Oct					
1.	Untreated									
2.	1 spray (GS31)		Amistar Xtra 400							
3.	1 spray (GS39)			Radial 400						
4.	2 spray		Prosaro 300	Radial 400						
5.	s.t. + 2 spray	Systiva		Radial 400	Prosaro 300					
6.	3 spray		Aviator 416	Radial 400	Prosaro 300					
			1/1001							

S.t. Seed treatment: Systiva applied at 150mL/100kg seed

Table 2. Grain yield under different fungicide strategies.

		Grain Yield							
		DBA A	urora		DBA V	'ittarc	pi	Me	ean
	Treatment	Yield	t/ha		Yield	t/ha		Yield	t/ha
1.	Untreated	6.44	-		5.77	-		6.10	bc
2.	1 spray (GS31)	6.24	-		5.55	-		5.90	С
3.	1 spray (GS39)	6.57	-		6.06	-		6.32	b
4.	2 spray	6.77	-		6.57	-		6.67	а
5.	s.t. + 2 spray	6.58	-		6.22	-		6.40	ab
6.	3 spray	6.86	-		6.48	-		6.67	а
	Mean	6.58	а		6.11	b			
LSD Fungicide p = 0.05				0.3			P val	~	<0.001
LSD Cultivar p=0.05			0.17			P val		<0.001	
LSD	Fungicide x Cultivar P=	=0.05		ns			P val	().4926

Released:24 February 2021

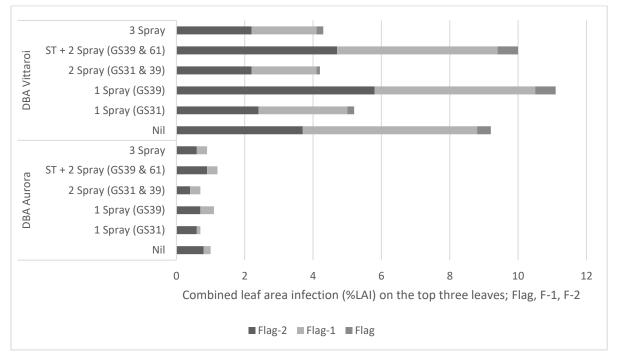


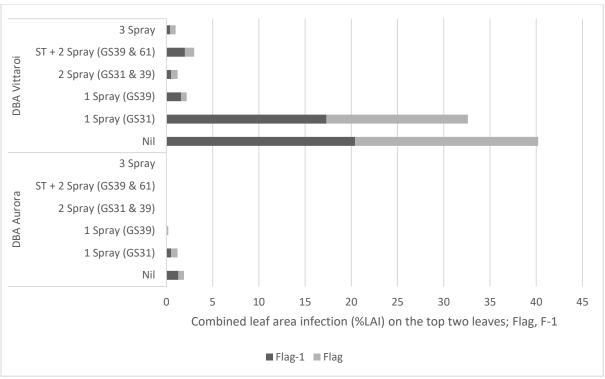
Table 3. Influence of variety and fungicide strategy on % Stripe rust leaf area infection (%LAI) on flag leaf, F-1 and F-2 at awn emergence (GS49) & soft dough (GS85) – Assessed 24 Sep and 6 Nov respectively.

		GS49 %LAI			GS 85 %LAI		
		Flag Leaf	Flag-1	Flag-2	Flag Leaf	Flag-1	
	DBA Aurora						
1.	Untreated	0.0 -	0.2 c	0.8 -	0.6 b	1.3 b	
2.	1 spray (GS31)	0.0 -	0.1 c	0.6 -	0.7 b	0.5 b	
3.	1 spray (GS39)	0.0 -	0.4 c	0.7 -	0.2 b	0.0 b	
4.	2 spray (GS31 & 39)	0.0 -	0.3 c	0.4 -	0.0 b	0.0 b	
5.	S.t. + 2 spray (GS39 &	0.0 -	0.3 c	0.9 -	0.0 b	0.0 b	
6.	3 spray (GS31, 39 & 61)	0.0 -	0.3 c	0.6 -	0.0 b	0.0 b	
	DBA Vittaroi						
1.	Untreated	0.4 -	5.1 a	3.7 -	19 a	20 a	
2.	1 spray (GS31)	0.2 -	2.6 b	2.4 -	15 a	17 a	
3.	1 spray (GS39)	0.6 -	4.7 a	5.8 -	0.6 b	1.6 b	
4.	2 spray (GS31 & 39)	0.1 -	1.9 b	2.2 -	0.7 b	0.5 b	
5.	S.t. + 2 spray (GS39 &	0.6 -	4.7 а	4.7 -	1.0 b	2.0 b	
6.	3 spray (GS31, 39 & 61)	0.2 -	1.9 b	2.2 -	0.6 b	0.4 b	
LSD Cultivar p=0.05		0.1	0.5	0.8	2.1	2.7	
P va	1	<0.001	<0.001	<0.001	<0.001	<0.001	
LSD	Fungicide x Cultivar	ns	1.3	2.0	5.0	6.5	
P val		0.143	0.002	0.096	<0.001	< 0.001	

Figure 1. Influence of fungicide strategy on stripe rust infection (% leaf area infected) on flag, F-1 and F-2 at (GS49) in durum wheat grown under overhead irrigation. Note GS61 still to applied.

Released:24 February 2021

la cia


MFMG

The GRDC Optimising Irrigated Grains Project is a collaborative project including the following project partners:

Ri/erinePlains

Figure 2. Influence of fungicide strategy on stripe rust infection (% leaf area infected) on flag, F-1 and F-2 at (GS85) in durum wheat grown under overhead irrigation.

Released:24 February 2021

Trial 6 Disease Management for Irrigated Crops – Products, Rates and Timings

Project objective: To assess the impact of fungicide management strategies with and without upfront at seeding fungicide options

Location: Finley IRCFAR Code: FAR D20-08-1Sown: 19 MayCultivar: DBA VittaroiHarvested: 29th November 2020Rotation position: Fallow (2019), Faba beans (2018), Wheat (2017)Soil Management: Cultivation with speed disc in AutumnIrrigation: Overhead lateral Irrigation 5 x 25mm in spring. Total applied 125mm (1.25 ML/ha)GSR: April-October 244mm. Total water available 369mm

Key Messages:

- Fungicide strategies generated yield increases of between 0.29 0.77t/ha from the control of stripe rust (valued at \$117 – 312/ha at \$405/t).
- All fungicide strategies significantly increased yield.
- The stripe rust control data and yield results indicated that 2 spray foliar strategies or flutriafol plus a follow up foliar spray could be used to secure disease control and yield responses.
- Small benefits to a third foliar spray were not significantly better than the equivalent two spray programme.
- There was no significant difference in grain yield between treatments using Opus and Radial at GS31
- Systiva at sowing was just as effective in maintaining grain yield as Opus at GS31 but gave less effective stripe rust control than flutriafol and Jockey.
- Jockey and Flutriafol at sowing were not as effective in maintaining grain yield as Opus at GS31.

Released:24 February 2021

			Yie	ld			
	Treatment	At sowing	GS31	GS39	GS61	t/h	а
	Name						
1.	0 Units	Untreated				6.05	С
2.	Systiva + 1 Spray	Systiva Seed		Prosaro 300			
	Unit	Trt				6.96	b
3.	Jockey + 1 Spray	Jockey Seed		Prosaro 300			
	Unit	Trt				6.87	b
4.	Flutriafol + 1	Flutriafol in		Prosaro 300			
	Spray Unit	furrow				6.82	b
5.	2 Spray (O + P)		Opus 500	Prosaro 300		7.11	ab
6.	2 Spray (O + A)		Opus 500	Aviator 416		6.87	b
7.	2 Spray (R + A)		Radial 840	Aviator 416		6.87	b
8.	3 Spray (O+P+O)		Opus 500	Prosaro 300	Opus		
					250	7.30	а
9.	3 Spray (O+A+O)		Opus 500	Aviator 416	Opus		
					250	6.99	b
10	3 Spray (R+A+O)		Radial 840	Aviator 416	Opus		
•					250	6.97	b
	Mean					6.9	3
	LSD					0.36	65
	P val					0.03	21

Table 1. Influence of fungicide treatment on grain yield.

Table 2. Influence of fungicide treatment on grain quality - protein content (%), test weight (kg/hl)and screenings (%).

Treatment			Grain quality	
		Protein %	Test Weight Kg /hL	Screenings %
1.	Untreated	14.3 -	76.3 -	1.2 -
2.	S.t. fb 1 Spray	14.3 -	77.2 -	1.1 -
3.	Jockey fb 1 Spray	14.1 -	77.1 -	1.0 -
4.	Fl fb 1 Spray	14.5 -	77.3 -	1.1 -
5.	2 Spray (O + P)	14.1 -	77.4 -	1.1 -
6.	2 Spray (O + A)	14.4 -	76.6 -	1.4 -
7.	2 Spray (R + A)	14.4 -	77.3 -	1.2 -
8.	3 Spray (O+P+O)	14.2 -	77.8 -	1.0 -
9.	3 Spray (O+A+O)	14.5 -	77.6 -	1.2 -
10.	3 Spray (R+A+O)	14.5 -	77.0 -	1.2 -
	Mean	14.3	77.2	1.1
	LSD	ns	ns	Ns'[
	P val	0.503	0.366	0.313

Fb – followed by

Released:24 February 2021

MFMG 🔜

🚺 tia

SFS

MAA

FAR

Trea	tment	Stripe rust infection (% LAI)										
		In	fectior	n at GS	49		Infection at GS65					
	Treatment Name	Flag	Fla	g-1	Flag	g-2	Fla	ng	Flag	g-1	Flag	g-2
1.	Untreated	0.2 -	1.5	ab	3.2	а	11.5	а	15.1	а	29.6	а
2.	S.t. fb 1 Spray	0.2 -	1.2	abc	2.0	a b	2.7	b	3.0	b	5.6	b
3.	Jockey fb 1 Spray	0.1 -	0.7	bcd	1.4	bc	2.2	bcd	1.9	bc	2.2	bc
4.	Fl fb 1 Spray	0.0 -	0.3	d	0.3	с	0.7	d	0.9	с	1.5	с
5.	2 Spray (O + P)	0.2 -	0.8	a-d	1.8	b	1.8	bcd	1.8	bc	3.2	bc
6.	2 Spray (O + A)	0.1 -	0.8	a-d	1.8	b	1.0	cd	2.9	b	2.5	bc
7.	2 Spray (R + A)	0.0 -	1.6	а	1.4	bc	1.5	bcd	1.9	bc	3.6	bc
8.	3 Spray (O+P+O)	0.1 -	1.1	abc	1.5	bc	1.3	bcd	1.7	bc	1.8	С
9.	3 Spray (O+A+O)	0.2 -	1.3	ab	1.0	bc	2.4	bc	2.8	b	3.8	bc
10.	3 Spray (R+A+O)	0.0 -	0.4	cd	1.0	bc	2.3	bc	1.7	bc	2.9	bc
	Mean	0.1	1	.0	1.	5	2.	7	3.4	4	5.	7
	LSD	0.3	0	.8	1.3	3	1.	5	1.8	8	3.	4
	P val	0.685	0.0)29	0.02	17	<0.0	001	<0.0	01	<0.0	01

Table 3. Influence of fungicide treatment on stripe rust infection assessed at GS49 (23-Sep) and GS65 (8-Oct).

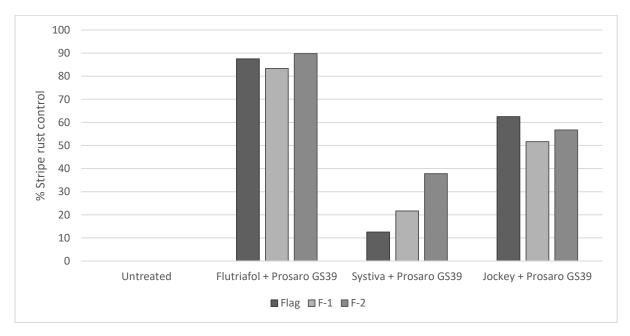


Figure 1. Stripe rust control (% with untreated set as 0% control) of at sowing treatments. Assessed 23/9 (GS49).

Released:24 February 2021

The GRDC Optimising Irrigated Grains Project is a collaborative project including the following project partners:

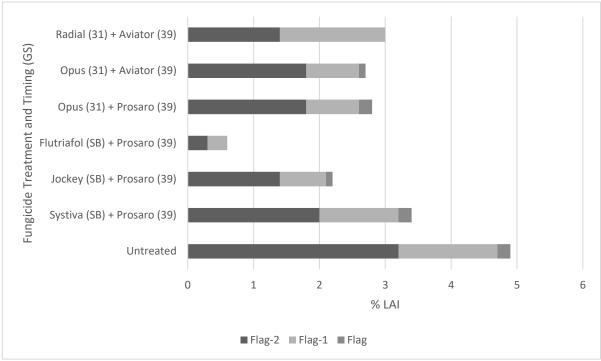

SOUTHERI

Figure 2. Stripe rust infection (% leaf area infected) at GS49 (23-Sep). *SB* – *Seedbed at sowing.*

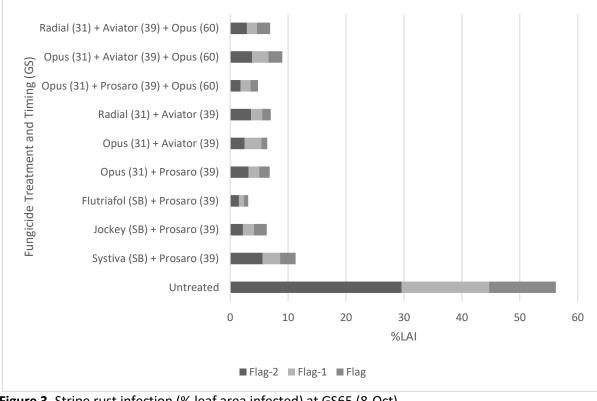


Figure 3. Stripe rust infection (% leaf area infected) at GS65 (8-Oct).

Ri/erinePlains

Released:24 February 2021

MFMG

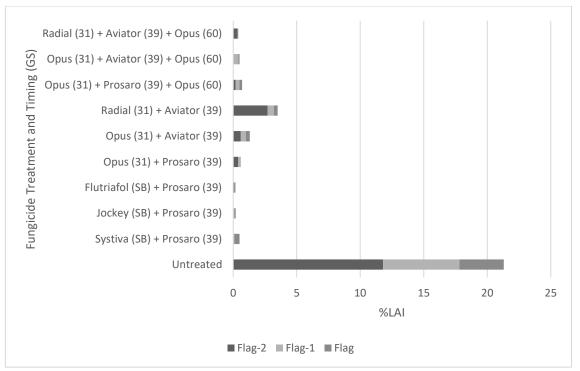


Figure 4. Stripe rust infection (% leaf area infected) at GS83 (29-Oct).

Released:24 February 2021

Trial 7 Influence of Plant Growth Regulation on Durum Yield and Profitability under Irrigation

Location: Finley IRCFAR Code: FAR D20-09-1Sown: 19 MayCultivar: DBA AuroraHarvested: 29th November 2020Rotation position: Fallow (2019), Faba beans (2018), Wheat (2017)Soil Management: Cultivation with speed disc in AutumnKenter State S

Irrigation: Overhead lateral Irrigation 5 x 25mm in spring. Total applied 125mm (1.25 ML/ha) **GSR:** April-October 244mm. Total water available 369mm

Key Messages:

- A number of PGR strategies based on Moddus Evo (trinexapac ethyl), Errex (chlormequat) and a coded PGR were noted to significantly reduce lodging in irrigated DBA Aurora.
- Reduction in lodging whilst significant did not significantly increase yield relative to the untreated control, a factor associated with later occurrence of the lodging in grain fill (GS87 late dough).
- Grazing twice at tillering and at pseudo stem erect (GS22 &30) prevented lodging and was more effective than a number of PGR programmes, however it significantly reduced yield relative to the control.
- Sequences of PGR treatment with the first application at GS30 gave significantly better lodging control than the untreated, single applications of PGR were less effective.
- Small significant reductions in grain screenings were observed as a result of some treatments

PGR	Treatment	Grain yield and quality			
			Yield	Screenings	
No.	Product and Rate	Timing	t/ha	%	
1.	Untreated		7.50 ab	3.6 a	
2.	Moddus Evo 200mL/ha + Errex 1.3L/ha	GS31-32	7.50 ab	2.8 c	
3.	Moddus Evo 100mL/ha + Errex 0.65L/ha	GS30	7.65 ab	2.5 cd	
	Moddus Evo 100mL/ha + Errex 0.65L/ha	GS32			
4.	Errex 1.3L/ha	GS30	7.69 ab	2.6 cd	
	Moddus Evo 200mL/ha	GS32			
5.	Errex 0.65L/ha	GS30	7.71 ab	2.8 c	
	Moddus Evo 200mL/ha + Errex 0.65L/ha	GS32			
6.	Moddus Evo 200mL/ha + Errex 1.3L/ha	GS31-32	7.80 a	2.7 c	
	FAR PGR 20/01 0.75 L/ha	GS39			
7.	Moddus Evo 100mL/ha + Errex 0.65L/ha	GS30	7.77 a	2.7 c	
	Moddus Evo 100mL/ha + Errex 0.65L/ha	GS32			
	FAR PGR 20/01 0.75 L/ha	GS37			
8.	FAR PGR 20/01 0.75 L/ha	GS39	7.61 ab	3.0 bc	
9.	Grazing (twice GS22 & GS30)	GS22 &	6.63 c	2.1 d	
		GS30			
10.	FAR PGR 20/01 0.75 L/ha + Errex 1.3 L/ha	GS32	7.28 b	3.4 ab	
	Mean		7.51	2.81	
	LSD		0.435	0.52	
	P val		<0.001	<0.001	

Table 1. Influence of PGR strategy on Grain yield (t/ha) and Screening (%).

Released:24 February 2021

The GRDC Optimising Irrigated Grains Project is a collaborative project including the following project partners:

RiverinePlains

 Table 2. Dry matter removed (kg/ha) and timing of mechanical defoliation.

Grazing Defoliation							
Growth Stage	GS23	GS31	Total				
Date	14 July	31 July					
Dry Matter removed (kg/ha)	233	345	578				

Table 3. Influence of PGR treatment and grazing on lodging index score (% plot area lodged x severity 0-5 scale (0-500)).

			Lodging			
			17 Nov (GS87)	29 Nov (Harvest)		
No.	Product and Rate	Timing	Score (0-500)	Score (0-500)		
1.	Untreated		109 -	223 a		
2.	Moddus Evo 200mL/ha + Errex 1.3L/ha	GS31-32	90 -	134 ab		
3.	Moddus Evo 100mL/ha + Errex 0.65L/ha	GS30				
	Moddus Evo 100mL/ha + Errex 0.65L/ha	GS32	47 -	71 bc		
4.	Errex 1.3L/ha	GS30				
	Moddus Evo 200mL/ha	GS32	24 -	39 bc		
5.	Errex 0.65L/ha	GS30				
	Moddus Evo 200mL/ha + Errex 0.65L/ha	GS32	11 -	56 bc		
6.	Moddus Evo 200mL/ha + Errex 1.3L/ha	GS31-32				
	FAR PGR 20/01 0.75 L/ha	GS39	29 -	73 bc		
7.	Moddus Evo 100mL/ha + Errex 0.65L/ha	GS30				
	Moddus Evo 100mL/ha + Errex 0.65L/ha	GS32				
	FAR PGR 20/01 0.75 L/ha	GS37	14 -	56 bc		
8.	FAR PGR 20/01 0.75 L/ha	GS39	40 -	85 bc		
9.	Grazing (twice GS22 & GS30)	GS22 &				
		GS30	0 -	0 c		
10.	FAR PGR 20/01 0.75 L/ha + Errex 1.3 L/ha	GS32	79 -	145 ab		
	Mean		44.3	88.1		
	LSD		77	110		
	P val		0.097	0.019		

Released:24 February 2021

Kerang VIC

Irrigated trials conducted at the Kerang irrigated research centre 2020 were managed by the Irrigated Cropping Council

Trial 1 Optimum Plant Population Under Sprinkler Irrigation

Location: Kerang, VictoriaFAR Code: ICC D20-01-3Sown: 29 MayCultivar: DBA Aurora and DBA VittaroiHarvested: 11 December 2020Rotation position: Dryland vetch/brown manure 2019Soil Type: Neutral medium grey clayIrrigation: Overhead sprinkler irrigation 8 applications totalling 208mm (2.08 ML/ha)GSR: April-October 250mm. Total water available 458mm

Key Messages:

- The average establishment rate for the trial averaged 6%.
- There were differences in biomass at GS31, with the trend to lower biomass at lower seeding rates and this was reflected in shoot numbers.
- Yield was not influenced by plant population in either variety.
- Yield was below expectations which appears to be due to inadequate irrigation although the amount of irrigation applied exceeded the evaporation in the spring period.
- The lowest sowing rate of 100 seeds/m² equates to a plant population of approximately 76 plants/m² or
- Harvest Index ranged from 0.33 to 0.39 with the exception of one treatment.
- Water use efficiency was 15.5 kg/mm

Table 1. Establishment - Plant population (plants/m²) established from four seed rates with two different cultivars grown under overhead irrigation.

		Established Populatio	n
Seed Rate	DBA Aurora	DBA Vittaroi	Mean
	Plants/m ²	Plants/m ²	Plants/m ²
100 seeds/m ²	68.0 d	76.8 cd	72.4 d
200 seeds/m ²	148.0 bc	113.5 c	130.8 c
300 seeds/m ²	176.5 b	177.8 b	177.1 b
400 seeds/m ²	230.5 a	219.5 a	225.0 a
Mean	155.8	146.9	151.3
LSD Seed Rate p = 0.05	26.21	P val	<0.001
LSD Cultivar p=0.05	18.53	P val	0.331
LSD Seed Rate x Cultivar.	37.06	P val	0.336

Released:24 February 2021

Treatment **Canopy composition** Plants/m² Tillers/m² Heads/m² **DBA Aurora** 100 seeds/m² 68.0 d 558 322.9 С е 200 seeds/m^2 432.0 148.0 bc 670 bc ab 300 seeds/m^2 784 460.4 176.5 b ab ab 400 seeds/m² 230.5 а 833 а 485.4 а DBA Vittaroi 100 seeds/m^2 76.8 344.5 cd de 200 seeds/m² 113.5 С 359.8 cd 300 seeds/m² 177.8 404.2 b bcd 400 seeds/m^2 425.7 219.5 abc а Mean 151 404 LSD Seed Rate x Cultivar. P=0.05 37.06 121.3 69.98 P val Seed Rate x Cultivar. 0.336 0.052 P=0.05 P val Seed Rate P=0.05 < 0.001 0.003 < 0.001 P val Cultivar. P=0.05 0.331 0.022 _

Table 2. Influence of plant population on canopy composition, plants/m² (GS21), tillers/m² (GS31) andheads/m² (GS87) – assessed GS21 (29 Jun), GS31 (13 Aug), GS87 (12 Dec).

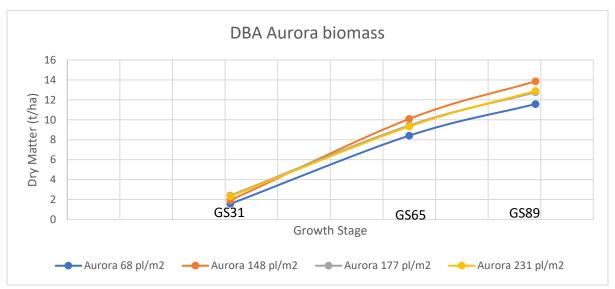


Figure 1. Influence of plant population on dry matter production (t/ha).

There were differences in biomass measured at GS31, reflecting shoot number and seeding rate. By flowering, there were no differences in biomass.

Maximum biomass achieved at harvest was 13.86 t DM/ha by DBA Aurora sown at 200 seeds/m2, or although this was not statistically different to any other treatment.

Released:24 February 2021

The GRDC Optimising Irrigated Grains Project is a collaborative project including the following project partners:

Ri/erinePlains

			Yield		Protein		
Plants/m ²	(actual)	Aurora	Vittaroi	Mean	Aurora	Vittaroi	Mean
Aurora	Vittaroi	t/ha	t/ha	t/ha	%	%	%
68	77	4.76 -	4.96 -	4.86 -	16.4 b	16.2 a	16.3 -
148	114	6.10 -	5.42 -	5.76 -	15.5 b	16.4 a	15.9 -
177	178	5.92 -	4.97 -	5.45 -	15.5 b	16.4 a	15.9 -
231	220	5.72 -	5.12 -	5.42 -	15.6 b	16.3 a	15.9 -
Mean		5.62 -	5.12 -		15.7 b	16.3 a	

Table 3. Influence of seed rates (plant population) on grain yield (t/ha) with two different varieties grown under overhead irrigation.

LSD Cultivar p=0.05	ns	0.38
P val	0.072	0.006
LSD Seed Rate p=0.05	ns	ns
P val	0.149	0.490
LSD Seed Rate x Cultivar.	ns	0.77
P=0.05		
P val	0.474	0.131

 Table 4. Influence of seeding rate on harvest Index.

Sowing Rate (seeds/m ²)	100	200	300	400			
		Harvest Index					
Aurora	0.36 b	0.33 b	0.38 b	0.38 b			
Vittaroi	0.36 b	0.37 b	0.39 b	0.45 a			
p _{var} = 0.016, p _{rate} = 0.010, p _{vxr} = 0.213, lsd _{vxr} = 0.055, cv% = 9.9							

Grain yield was not significantly different from either variety or seeding rate.

Protein was not significantly different due to seeding rate in Vittaroi, but the low rate in Aurora was. This may be due to the low yield being reflected in higher protein.

Harvest Index was similar in all treatments apart from the high seeding rate in Vittaroi. Overall, the harvest index was relatively low.

The average yield for the trial was 5.4 t/ha. This represents a WUE of 15.5 kg/mm.

Released:24 February 2021

Sown: 29 May

Trial 2 Optimum Plant Population Under Flood Irrigation

FAR Code: ICC D20-01-4 Cultivars: DBA Aurora and DBA Vittaroi

Harvested: 10 December 2020

Location: Kerang, Victoria

Rotation position: Dryland vetch/brown manure 2019

Soil Type: Neutral medium grey clay

Irrigation: Flood irrigation 4 applications totalling 430mm (4.3 ML/ha)

GSR: April-October 250mm. Total water available 680mm

Key Messages:

- The average establishment rate for the trial averaged 70% ranging from 59 83%, trending to higher establishment with lower seeding rates.
- Biomass at GS31 showed a trend to higher biomass generated by higher shoot numbers as seeding rate (plant population) increased.
- There was no difference in biomass at mid-flowering in DBA Aurora due to the different plant populations having similar heads numbers across all 4 seeding rates..
- Biomass at harvest was influenced by variety and seeding rate in DBA Vittaroi only and at a seeding rate of 300 seeds/m² or 194 plants/m². This could possibly be due to sampling variability.
- Seeding rate, and hence plant population had little influence on grain yield. A seeding rate of 100 seeds/m² is the equivalent of approximately 60 kg/ha seeding rate or an establishment of 70 plants/m².
- Protein content was influenced by variety more than seeding rate.
- Water use efficiency was 16.5 kg/mm

Table 1. Establishment - Plant population (plants/m²) established from four seed rates with twodifferent cultivars grown under flood irrigation.

		Established Populatio	n
Seed Rate	DBA Aurora	DBA Vittaroi	Mean
	Plants/m ²	Plants/m ²	Plants/m ²
100 seeds/m ²	83.2 d	72.0 d	77.6 d
200 seeds/m ²	148.2 c	166.0 c	157.1 с
300 seeds/m ²	198.2 bc	193.8 bc	196.0 b
400 seeds/m ²	243.8 a	235.0 ab	239.4 a
Mean	168.4	166.7	167.5
LSD Seed Rate p = 0.05	<0.001	P val	28.46
LSD Cultivar p=0.05	0.863	P val	20.12
LSD Seed Rate x Cultivar.	0.707	P val	40.24

Released:24 February 2021

Treatment		Canopy composition	
	Plants/m ²	Tillers/m ²	Heads/m ²
DBA Aurora			
100 seeds/m ²	83.2 d	524 c	370.0 bcd
200 seeds/m ²	148.2 c	681 b	381.0 bc
300 seeds/m ²	198.2 bc	715 ab	429.0 ab
400 seeds/m ²	243.8 a	836 a	454.8 a
DBA Vittaroi			
100 seeds/m ²	72.0 cd		295.0 е
200 seeds/m ²	166.0 c		320.8 de
300 seeds/m ²	193.8 bc		386.2 bc
400 seeds/m ²	235.0 ab		331.2 cde
Mean	167.5		371
LSD Seed Rate x Cultivar. P=0.05	40.24	127.4	59.50
P val Seed Rate x Cultivar.	0.707		0.251
P=0.05			
P val Seed Rate P=0.05	<0.001	0.003	0.004
P val Cultivar. P=0.05	0.863	-	<0.001

Table 2. Influence of plant population on canopy composition, plants/m² (GS21), tillers/m² (GS31) and heads/m² (GS87) – assessed GS21 (29 Jun), GS31 (13 Aug), GS87 (12 Dec).

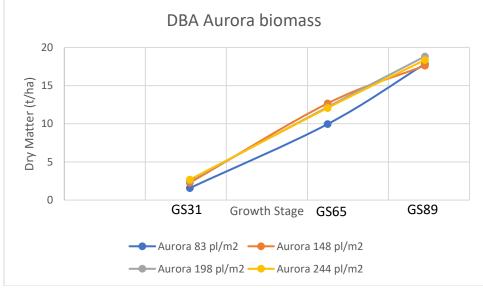


Figure 1. Influence of plant population on dry matter production (t/ha).

There were differences in biomass and shoots measured at GS31, with higher the plant population, the trend was for higher biomass and shoots/m².

Biomass at mid-flowering saw no difference in either head numbers or biomass in DBA Aurora. Maximum biomass achieved at harvest was 18.54 t DM/ha in DBA Vittaroi at the 300 seeds/m2 seeding rate. Seeding rate made no difference to biomass in DBA Aurora.

Released:24 February 2021

			Yield					Protein					
Plants/m ²	nts/m ² (actual)		ora	Vitte	aroi	Меа	n	Aur	Aurora Vittaroi		iroi	Меа	n
Aurora	Vittaroi	t/h	а	t/l	ha	t/h	a	9	6	%	6	%	
83	72	9.67	ab	8.85	d	9.2	-	14.4	bcd	15.4	а	14.9	-
148	166	9.79	ab	9.52	abc	9.6	-	14.2	cd	15.0	abc	14.6	-
198	194	9.96	а	9.18	cd	9.5	-	14.0	d	14.4	bcd	14.2	-
244	235	9.67	ab	9.26	bcd	9.4	-	14.2	cd	15.2	ab	14.7	-
Mean		9.77	а	9.20	b			14.2	b	15.0	а		
LSD Cultiv	ar p=0.05			0.307	7					0.41	3		
P val		<0.001						<0.00)1				
LSD Seed I	Rate p=0.05			ns			ns						
P val				0.294	1					0.10	7		

0.614

0.485

Table 3. Influence of seed rates (plant population) on grain yield (t/ha) with two different varieties grown under flood irrigation.

 Table 4. Influence of seeding rate on harvest Index.

LSD Seed Rate x Cultivar.

P=0.05 P val

Grain Yield (t/ha	a)							
Sowing Rate (seeds/m ²)	100	200	300	4000				
Harvest Index								
Aurora	0.48 -	0.49 -	0.47 -	0.44 -				
Vittaroi	0.48 -	0.58 -	0.44 -	0.52 -				
$p_{var} = 0.035$, $p_{rate} = 0.016$, $p_{vxr} = 0.048$, Isd $_{vxr} = NS$, $cv\% = 16.2$								

Highest yield grain was from the 300 seeds/m2 rate with Aurora. No seeding rate in Aurora was significantly different. Similarly, all Vittaroi seeding rates were not statistically different.

Protein was generally lower in Aurora, with no treatment influencing protein.

Harvest Index was variable, but there was interaction between rate and variety that means analysis is not possible.

The average yield for the trial was 9.4 t/ha. This represents a WUE of 16.5 kg/mm.

Released:24 February 2021

0.827

0.719

Trial 3 Nitrogen Use Efficiency Trial – Nitrogen Rates

Location: Kerang, VictoriaFAR Code: ICC D20-03-2Sown: 29 May 2020Cultivar: DBA VittaroiHarvested: 10 December 2020Rotation position: Dryland vetch/brown manure 2019Soil Type: Neutral medium grey clayIrrigation: Flood irrigation 4 applications totalling 430mm (4.3 ML/ha)

GSR: April-October 250mm. Total water available 680mm

Key Messages:

- Relatively high soil N at sowing (130kg N/ha 0-60cm) saw the zero N control treatment (#1) accumulate 174 kg N/ha at harvest.
- Applied N saw increases in accumulated plant N approximating the amount applied as urea.
- Maximum yield was achieved by applying 300 kg N/ha split as two topdressings at GS32 and GS37.
- Grain protein exceeded the required 13% with 200 kg N/ha applied as a split application at GS32 and GS37.
- Highest grain protein was achieved with an application of 100 kg N/ha at GS55 on top of earlier applications of 200 and 250 kg N split at GS 32 and GS 55, but not significantly different to that of the 300 kg N/ha @ GS32/37 treatment.

		Treatments		
Intended N application	GS30	GS32	GS39	
Actual stage*	GS32	GS 37	GS55	
Date	8 September	18 September	4 October	Total N applied
Treatment 1	0	0		0
Treatment 2	50	50		100
Treatment 3	75	75		150
Treatment 4	100	100		200
Treatment 5	125	125		250
Treatment 6	150	150		300
Treatment 7	100	100	100	300
Treatment 8	125	125	100	350

Table 1: Treatment Summary – N application rates (kg N/ha) and timing (Growth Stage).

All treatments received 22 kg N/ha as starter fertiliser.

*: Topdressing was delayed by lack of rainfall at GS30, and so further treatments were subsequently delayed.

Released:24 February 2021

		G	S31			G	5 65			Har	vest	
Trt	DM (t	/ha)	Accumi N (kg N		DM (t/	ha)	Accumu N (kg N		DM (t/	'ha)	Accumu N (kg N	
1	2.06	-	80.5	-	8.60	а	98.9	а	14.51	С	174.1	d
2									16.01	bc	279.4	С
3	1.94	-	67.1	-	10.89	b	218.1	b	16.59	bc	300.3	С
4									15.81	bc	310.2	bc
5									18.82	а	363.6	а
6	1.96	-	68.0	-	10.82	b	228.9	b	17.49	ab	359.0	ab
7									16.38	bc	400.6	а
8									17.29	ab	376.9	а
P val	0.46	51	0.09	99	0.004	4	<0.00)1	0.02	6	<0.00)1
LSD	NS	5	NS	5	1.11	-	18.4	9	2.19	9	49.5	5
cv%	6.9)	11.	2	6.3		5.9		9.0		10.5	5

 Table 2. Canopy measurements – NDVI, dry matter and accumulated plant N.

Soil N at sowing was 130 kg N/ha (0-60cm). This was sufficient N to allow even canopy development until at least to GS31, as indicated by similar biomass across all treatments. However, differences were apparent at flowering where Treatment 1 had begun to suffer from reduced growth, whereas treatments 3 and 6 were similar despite double the amount of N being applied to 6.

Maximum biomass at harvest was attained by Treatment 5 (250 kg N/ha). The extra 100 kg N/ha applied to treatments 7 and 8 saw no increase in biomass over their 'sister' treatments 4 and 5 that had similar amounts of N applied up to GS 37.

Uptake of N at harvest by treatment 1 was 174 kg N/ha, which is close to expectations given 130 kg N/ha in the soil to 60 cm and 25 kg N/ha as starter fertiliser.

Highest N uptake was by treatment 7 at 400.6 kg N/ha from a total of 474 kg N/ha supplied (300 kg N/ha applied as urea plus assuming the amount of N in treatment 1 uptake (174 kg N/ha) was supplied by the soil and starter N).

Treatment	Grain (t/ł		Prote	in (%)	Screenings (%)	Test Weight (kg/hl)	Harvest Index
1	7.82	d	11.0	d	0.6	82.8	0.48
2	8.73	С	11.8	cd	0.7	82.4	0.50
3	9.46	b	12.9	bcd	0.5	82.1	0.46
4	9.57	b	13.5	abc	0.5	81.9	0.52
5	9.57	b	12.8	bcd	0.6	82.5	0.51
6	10.40	а	14.4	ab	0.5	81.0	0.47
7	9.59	b	15.1	а	0.5	81.6	0.54
8	9.70	b	15.4	а	0.6	81.3	0.53
р	0.3	52	<0.	001	0.0.456	0.200	0.155
lsd	N	S	1.8	85	NS	NS	NS

Table 3. Yield and grain quality.

Released:24 February 2021

cv%	12.8	9.6	33.1	1.2	8.7

Highest yield was attained by Treatment 6, with a total of 300 kg N/ha applied at GS32 and GS37. As durum wheat is about meeting the minimum specification of 13% protein, Treatment 4, with a total of 200 kg N/ha applied at GS32 and GS37, was the treatment with the lowest applied N to exceed 13% protein, although it was not significantly different to treatments 2 and 3 which received 50 and 100 kg N/ha less.

Late application of 100 kg N/ha at GS55 did boost grain protein, but not significantly above that achieved with treatment 6.

While there were differences in the Harvest Index, these were not statistically significant.

Released:24 February 2021

Trial 4 Nitrogen Use Efficiency Trial – Nitrogen Timing Trial

Location: Kerang, VictoriaFAR Code: ICC D20-04-2Sown: 29 May 2020Cultivar: DBA VittaroiHarvested: 10 December 2020Rotation position: Dryland vetch/brown manure 2019Soil Type: Neutral medium grey clayIrrigation: Flood irrigation 4 applications totalling 430mm (4.3 ML/ha)GSR: April-October 250mm. Total water available 680mm

Key Messages:

- No N timing strategy stood out as a clear winner.
- The earlier the N was applied tended to see higher biomass produced.
- The later the N was applied tended to see higher accumulation of N.
- Delayed application of nitrogen resulted in yield reduction but higher grain protein.
- Harvest index averaged 0.49 and was not influenced by treatment.

 Table 1: Treatment Summary – N application rates (kg N/ha) and timing (Growth Stage).

Treatments	
Intended N Sowing GS30 GS32 application	GS39
Actual stage GS32 GS 37	7 GS55
Date29 May8 September18September	4 October Total N ber applied
Treatment 1 0 0 0	0
Treatment 2 50 50	100
Treatment 3 100 100	200
Treatment 4 150 150 0	300
Treatment 5 0 0	0
Treatment 6 50 50	100
Treatment 7 100 100	200
Treatment 8 150 150	300
Treatment 9 0	0 0
Treatment 10 50	50 100
Treatment 11 100	100 200
Treatment 12 150	150 300

All treatments received 22 kg N/ha as starter fertiliser.

*: Topdressing was delayed by lack of rainfall at GS30, and so all treatments were subsequently delayed.

Released:24 February 2021

	able 2 . Dry matter (t/ha) and accumulation of N (kg N/ha). GS31 GS 65 Harvest											
Treat ment	DM (t/ha)	Accumulate d N (kg N/ha)	DM (t/ha)	Accumulate d N (kg N/ha)	DM (t/ha)	Accumulate d N (kg N/ha)						
1	2.27 -	85.9 b	9.95 b	153.9 b	14.45 cd	191.2 ef						
2	2.66 -	92.0 b			16.27 bc	236.6 de						
3	2.87 -	115.7 a	11.87 a	253.8 a	18.97 a	282.3 cd						
4	2.75 -	105.1 ab			17.24 ab	274.9 de						
5					13.63 d	138.9 f						
6					15.43 bcd	260.4 d						
7			9.90 b	183.8 b	17.61 ab	335.4 bc						
8					16.32 bc	342.8 bc						
9					15.61 bcd	199.4 ef						
10					15.72 bcd	325.0 bc						
11			9.90 b	160.7 b	15.89 bcd	377.0 b						
12					17.17 ab	442.8 a						
P val	0.072	0.033	0.038	<0.001	0.001	<0.001						
LSD	NS	19.9	1.50	18.5	2.27	60.6						
cv%	11.0	11.2	9.0	5.9	9.1	15.0						

Table 2. Dry matter (t/ha) and accumulation of N (kg N/ha).

While biomass at GS 31 was not influenced by rate, accumulated N was higher in treatments 3 (100 kg N/ha) and 4 (150 kg N/ha) applied at sowing.

Dry matter assessments at GS65 showed, that at the rate of 200 kg N/ha, early application increased biomass and N accumulation.

Maximum biomass at harvest was attained by Treatment 3 (200 kg N/ha split between sowing and GS32). However this treatment was not significantly different to treatments 4 (300 kg N/ha split between sowing and GS32), 7 (200 kg N/10 split between GS 32 & GS37) and 12 (300 kg N/ha split between GS37 and GS55). Treatment 12 did have the highest N accumulation at 442.8 kg N/ha. If the amount of N available from the soil is the average of the treatments 1, 5 and 9 (where no N was applied apart from starter N at sowing) or 177 kg N/ha, then treatment 12 took up 265 kg N/ha of the applied 300 kg N.

Released:24 February 2021

Timing	Grain Yield (t/ha)	Protein (%)	Screenings (%)	Test Weight (kg/hl)	Harvest Index
Sowing/GS32	9.04	11.6 b	0.5	82.6	0.48
GS32/GS37	9.02	12.1 b	0.5	82.5	0.51
GS37/GS55	8.51	13.0 a	0.5	82.1	0.47
P val	*	0.012	0.63	0.081	0.068
LSD		0.864	NS	NS	NS
cv%		9.8	34.1	0.7	9.9

Table 3a. Influence of N timing on yield and grain quality.

*: Yield data is presented as treatment means only as there was significant interaction between N rate and timing.

Table 3b. Influence of N rate on yield and grain quality.

N rate (kg N/ha)	Grain Yield (t/ha)	Protein (%)	Screenings (%)	Test Weight (kg/hl)	Harvest Index
0	7.62	9.9 b	0.5	82.6 a	0.46
100	8.97	11.7 b	0.5	82.6 a	050
200	9.38	13.2 a	0.5	82.2 ab	0.48
300	9.45	14.2 a	0.5	81.9 b	0.49
	P *	<0.001	0.963	0.022	0.178
LS	D	0.998	NS	0.497	NS
cv	%	9.8	34.1	0.7	9.9

Table 4. Rate by Timing results for grain yield and protein.

RiverinePlains

	Yield (t/ha)							
	0 kg N/ha	100 kg N/ha	300 kg N/ha					
Sowing/GS32	7.73	9.17	9.40	9.85				
GS32/GS37	7.34	9.29	9.47	9.99				
GS37/GS55	7.78	8.45	9.28	8.52				

 $p_{timing} = 0.010$, $p_{rate} = <0.001$, $p_{txr} = 0.029$, $lsd_{txr} = NS$, cv% = 8.9

	Protein (%)									
	0 kg N/ha		100 kg	N/ha	200 kg	N/ha	300 kg N/ha			
Sowing/GS32	10.4	d	10.7	cd	12.2	С	13.3	bc		
GS32/GS37	10.0	d	11.9	С	13.2	bc	13.4	bc		
GS37/GS55	9.4	d	12.5	bc	14.1	b	15.8	а		
p _{timing} = 0.012, p	_{rate} = <0.00	1, p _{txr} = 0	.77, Isd _{txr} =	1.73 <i>,</i> cv%	= 9.8					

Yield trended higher as the rate of N was increased, but trended lower as N application was delayed. The interaction between timing and rate in the trial makes statistical analysis not possible. Logically, if the amount of N in the soil cannot sustain the crop until topdressing occurs, then yield will be compromised.

Released:24 February 2021

Grain protein trended higher as the rate of N increased, as well as the later the N was applied. Given the target protein for durum wheat is 13%, early N application needed to be at the 300 kg N/ha rate, while delayed application of 200 kg N/ha split at GS32/GS37 saw grain protein exceed the 13% threshold. The highest grain protein achieved in the trial was at a N rate of 300 kg/ha and applied at the GS37/GS55 stages, but. this was at the cost of yield.

While there were differences in the Harvest Index, these were not statistically significant

Released:24 February 2021

Trial 5 Germplasm Disease Management Interaction

Location: Kerang, Victoria Sown: 29 May FAR Code: ICC D20-07-2 Cultivar: DBA Aurora and DBA Vittaroi

Harvested: 10 December 2020

Rotation position: Dryland vetch/brown manure 2019

Soil Type: Neutral medium grey clay

Irrigation: Flood irrigation 4 applications totalling 430mm (4.3 ML/ha)

GSR: April-October 250mm. Total water available 680mm

Key Messages:

- Stripe rust was present in the trial but infection was observed in the lower canopy and not on the flag leaf.
- Fungicide strategy did not affect yield or grain quality.
- Variety choice played a role in grain quality based on higher proteins in Vittaroi.

Table 1. Treatment summary – application timing, product and rate.

Treatments	GS31 (24 August)	GS39 (21September)	GS61 (12 October)
Untreated			
2 Spray	0.3 l/ha Prosaro	0.4 l/ha Amistar Xtra	
Systiva* + 2 Spray		0.4 l/ha Amistar Xtra	0.3 l/ha Prosaro
3 Spray	0.4 l/ha Aviator	0.4 l/ha Amistar Xtra	0.3 l/ha Prosaro
GS 31	0.4 l/ha Amistar Xtra		
GS 39		0.4 l/ha Amistar Xtra	

*Systiva applied to the seed at 150ml/100 kg seed.

The treatments were applied to DBA Aurora and DBA Vittaroi

Table 2. Canopy measurements – % of green leaf loss due to stripe rust infection assessed on 13
October.

Treatments	DBA	Aurora	DBA	Vittaroi
	Flag Leaf	Lower canopy	Flag Leaf	Lower canopy
Untreated	5	5	5	30
2 Spray	< 5	< 5	< 5	5
Systiva + 2 Spray	< 5	5	< 5	10
3 Spray	< 5	< 5	< 5	< 5
GS 31	< 5	< 5	10	20
GS 39	< 5	< 5	< 5	10

Stripe rust was first detected on the trial site on 28 August in the MS-S rated bread wheats. The durum trials were at approximately GS32 at this stage.

Conditions during September were drier than average and further infections were limited. When the assessments were conducted on 13 October, very few new infections (active sporulation) were observed.

Infection was more prevalent in the lower canopy, with all treatments showing minimal green leaf loss on the flag.

Released:24 February 2021

Treatment	GS31	GS39	2 Spray	3 Spray	Sys+2	Untreated
Aurora	10.33	10.11	10.20	9.56	9.77	9.81
Vittaroi	9.39	9.96	10.10	10.25	9.59	9.28
	p _{var} = 0.242, p _{fu}	_{un} = 0.358, p _{vxf} =	0.163, lsd _{vxf} = N	S, cv% = 6.0		
	Protein (%)					
Aurora	13.8	14.0	13.8	14.0	14.0	13.9
Vittaroi	14.8	15.1	14.9	14.8	15.1	14.6
	p _{var} = <0.00)1, p _{fun} = 0.345,	p _{vxf} = 0.796, lsd _v	_{xf} = NS, cv% = 2.5	i	

Table 3. Yield and grain quality.

Grain yield was not influenced by either variety or fungicide strategy.

Grain protein was influenced by variety rather than fungicide strategy. It was a similar trend for test weight and screenings (not published).

The average yield for the trial was 9.86 t/ha. This represents a WUE of 14.2 kg/mm.

Released:24 February 2021

Trial 6 Disease Management for Irrigated Crops – Products, Rates and Timings

Location: Kerang, VictoriaFAR Code: ICC D20-08-2Sown: 29 MayCultivar: DBA VittaroiHarvested: 10 December 2020Rotation position: Dryland vetch/brown manure 2019Soil Type: Neutral medium grey clayIrrigation: Flood irrigation 4 applications totalling 430mm (4.3 ML/ha)GSR: April-October 250mm. Total water available 680mm

Key Messages:

- Stripe rust was present in the trial but infection was observed in the lower canopy and not on the flag leaf.
- Fungicide strategy did not affect yield or grain quality.

Treatments	GS00	GS31	GS39	GS65
	29 May	24 August	21September	12 October
1.Untreated				
2	Systiva		Prosaro	
	150ml/100kg		0.3 l/ha	
3	Jockey		Prosaro	
	450 ml/100kg		0.3 l/ha	
4	Flutriafol		Prosaro	
	400 ml/100kg		0.3 l/ha	
5	Vibrance	Opus	Prosaro	
	180 ml/100kg	0.5 l/ha	0.3 l/ha	
6	Vibrance	Opus	Aviator	
	180 ml/100kg	0.5 l/ha	0.4 l/ha	
7	Vibrance	Radial	Aviator	
	180 ml/100kg	0.84 l/ha	0.4 l/ha	
8	Vibrance	Opus	Prosaro	Opus
	180 ml/100kg	0.5 l/ha	0.3 l/ha	0.25 l/ha
9	Vibrance	Opus	Aviator	Opus
	180 ml/100kg	0.5 l/ha	0.4 l/ha	0.25 l/ha
10	Vibrance	Radial	Aviator	Opus
	180 ml/100kg	0.84 l/ha	0.4 l/ha	0.25 l/ha

Table 1. Treatment summary – application timing, product and rate.

*Systiva applied to the seed at 150ml/100 kg seed.

The treatments were applied to DBA Aurora and DBA Vittaroi

Released:24 February 2021

Treatments	Visual Assessr	Visual Assessment 13 October NDVI		
	Flag Leaf	Lower canopy	NDVI	
1 Untreated	10	40	0.53 d	
2	5	10	0.62 ab	
3	< 5	10	0.60 bc	
4	< 5	5	0.61 ab	
5	< 5	5	0.55 cd	
6	< 5	5	0.63 ab	
7	< 5	5	0.60 b	
8	< 5	< 5	0.61 b	
9	< 5	5	0.59 bc	
10	< 5	5	0.66 a	
		p _{ndvi}	= 0.001, lsd = 0.055, cv% = 0	

Table 2. Canopy measurements – % of green leaf loss assessed on 13 October.

Stripe rust was first detected on the trial site on 28 August in the MS-S rated bread wheats. The durum trials were at approximately GS32 at this stage.

Conditions during September were drier than average and further infections were limited. When the assessments were conducted on 13 October, very few new infections (active sporulation) were observed.

Infection was more prevalent in the lower canopy, with all treatments showing minimal green leaf loss on the flag.

NDVI assessment on 15 November saw some differences in canopy 'greenness', with the treatment 10 having the highest NDVI reading and the untreated, the lowest.

Treatment		Yield (t/ha)	Protein (%)	Screenings (%)	Test Weight (kg/hl)
1 Untreated		9.56	15.1	0.5	79.7
2		10.49	15.5	0.5	79.9
3		10.49	15.4	0.5	80.0
4		10.13	14.9	0.4	80.7
5		9.81	15.1	0.4	79.6
6		10.22	15.0	0.4	80.5
7		10.28	15.2	0.5	80.6
8		10.46	15.3	0.5	80.3
9		10.17	15.2	0.4	80.2
10		10.55	15.3	0.5	80.5
	P val	0.099	0.555	0.948	0.533
	LSD	NS	NS	NS	NS
	cv%	4.6	2.3	38.4	1.0

Table 3. Yield and grain quality.

Grain yield was not influenced by fungicide strategy.

RiverinePlains

Released:24 February 2021

The average yield for the trial was 10.2 t/ha. This represents a WUE of 15.0 kg/mm

Released:24 February 2021

Trial 7 Influence of Plant Growth Regulation on Durum Yield and Profitability under Irrigation

Location: Kerang, Victoria Sown: 29 May

FAR Code: ICC D20-09-2 Cultivar: DBA Aurora

Harvested: 10 December 2020

Rotation position: Dryland vetch/brown manure 2019

Soil Type: Neutral medium grey clay

Irrigation: Flood irrigation 4 applications totalling 430mm (4.3 ML/ha)

GSR: April-October 250mm. Total water available 680mm

Key Messages:

- Some of the trial treatments did result in reduced plant height but this did not necessarily result in reduced lodging.
- Grazing was not effective in reducing crop height but yield was similar to the highest yielding treatment.
- Application of PGRs at label rates, either as a single or split application resulted in the highest yields.
- There was some variation in grain protein due to the treatments but not enough to affect DR1 classification.

Table 1. Treatment summary – application timing, product and rate.

Treatments	GS30	GS31-32	GS32	GS37	GS39
1 Untreated					
2		E 1.3 l/ha M E 0.2 l/ha			
3	E 0.65 l/ha M E 0.1 l/ha		E 0.65 l/ha M E 0.1 l/ha		
4	E 1.3 l/ha		M E 0.2 l/ha		
5	E 0.65 l/ha		M E 0.1 l/ha		
6		E 1.3 l/ha M E 0.2 l/ha			PGR 0.75l/ha
7	E 0.65 l/ha M E 0.1 l/ha		E 0.65 l/ha M E 0.1 l/ha	PGR 0.75I/ha	
8					PGR 0.75l/ha
9			Grazed GS22&32		
10			E 1.3 l/ha		PGR 0.75l/ha

E = Errex 750 582 g/l chlormequat

M E = Modus Evo 250 g/l trinexapac-ethyl

PGR = Product not registered for use in Australia on wheat

Released:24 February 2021

Treatments	Plant H	eight (cm)	Lodging Score
1 Untreated	100	а	4.5
2	83	ef	5.0
3	81	f	4.0
4	86	de	4.5
5	98	ab	5.0
6	81	f	4.5
7	84	ef	4.5
8	98	ab	6.0
9	91	cd	5.3
10	95	bc	6.0
Р	val <0	.001	0.63
	LSD 4	.52	NS
	CV%	4.0	30.5

Table 2. Canopy measurements – Plant height on 13 October and lodging score assessed on 10December.

Lodging Score - 0 = no lodging, 9 = Completely lodged

In relation to reducing crop height, treatment 6 was the most effective, with treatments 2, 3 and 7 being statistically similar.

Treatments 1, 5 and 8 were least effective.

However no treatment was effective in controlling lodging, with the data being highly variable.

Treatments	Yield	(t/ha)	Protein (%)	Screenings (%)	Test Weight (kg/hl)
1 Untreated	7.61	d	14.2 ab	1.1	80.7
2	9.49	ab	14.5 a	0.9	80.7
3	9.59	ab	14.2 ab	1.1	81.1
4	9.65	а	14.1 ab	1.1	81.0
5	8.17	cd	14.2 ab	0.8	80.5
6	9.64	а	14.1 ab	1.0	80.0
7	8.95	abc	14.0 b	1.0	80.1
8	7.81	d	13.9 b	1.0	79.7
9	8.61	abcd	13.7 b	1.1	80.7
10	8.53	bcd	14.2 ab	1.1	80.5
р	0.001		0.048	0.627	0.334
lsd	1.08		0.428	NS	NS
cv%	8.5		2.1	22.6	1.0

Table 3. Yield and grain quality.

Highest yield was from treatment 4, statistically similar to treatments 2, 3, 6, 7 and 9.

Released:24 February 2021

MFMG

While protein was influenced by treatments, all protein levels were sufficient to meet DR1 specification.

Screenings and test weight were not affected by treatment.

Released:24 February 2021

Optimising Irrigated Grains (FAR1906-003RTX) A Grains Research & Development Corporation (GRDC) investment

PROVISIONAL HARVEST RESULTS:

Irrigated Canola Trials

Released:24 February 2021

Finley Irrigated Research Centre NSW

Irrigated trials conducted at the Finley irrigated research centre 2020 were managed by FAR Australia, hosted by Southern Growers.

Trial 1 Optimum Plant Population Under Overhead Irrigation

Project objective: To compare identical plant population x cultivar canola trials under overhead and
flood irrigationLocation: Finley IRCFAR Code: FAR C20-01-1Sown: 28 April 2020Cultivar: HyTTec® Trophy and 45Y28 RRHarvested: 27th November 2020Rotation position: Wheat (2019), Faba beans (2018), Fallow after rice (2017)Soil Management: Wheat stubble incorporated with speed disc in AutumnIrrigation: Overhead lateral irrigation 5 x 25mm in spring. Total applied 125mmGSR: April-October 244mm. Total water available 369mmAvailable Soil N: 129 kg N/ha (0 – 90cm)

Key Messages:

- Under overhead irrigation there was a significant interaction between plant population and cultivar
- With the 45Y28 RR hybrid there was no significant difference in yield (4.05 4.27t/ha) between 14 36 plants/m².
- With HyTTec[®] Trophy a maximum yield of 3.92 t/ha was achieved at the highest plant population achieved (approximately 30 plants/m² (sown at 80 seeds/m²).
- There was relatively poor establishment following incorporated wheat stubble with 35-50% establishment in both cultivars.
- When both cultivars were averaged there was significant advantage in dry matter (DM) at 20% flowering with plant populations over 15plants/m2.
- At harvest the DM content of the 45Y28 RR canopy averaged 14.36t/ha (all populations no significant difference) with a harvest index (%) of 25.6% (range 23.4 28.1%) (data not shown only available with 45Y28 RR).
- Thinner crops resulting from the lowest plant populations were reflected in lower crop reflectance scores (NDVI measured with a Greenseeker) up until flowering.
- The oil content of RR45Y28 RR was significantly higher than HyTTec® Trophy (42.7 v 41.9).
- WUE based on average yield of 45Y28 of 4.05t/ha was 15.6.

The trial establishment was between 35-50% and generated yields of HyTTec[®] Trophy between 3.18-3.92 t/ha and 45Y28 RR 3.69 - 4.27t/ha (Table 1 & 2). The RR hybrid gave similar yields between 14 - 36 plants/m² whilst yields of the TT hybrid were maximised at 30 plants/m² (see also Trial 6 where the same hybrid responded to 50 plants/m²).

Released:24 February 2021

			Yield t/ha	
Plants/m2	(actual)	HyTTec [®] Trophy	45Y28 RR	Mean
Trophy	45Y28	(Hybrid TT)	(RR Y Series Hybrid)	Yield t/ha
10	10	3.18 e	3.69 cd	3.44 с
20	14	3.34 e	4.17 ab	3.75 b
18	23	3.63 d	4.27 a	3.95 a
29	36	3.92 bc	4.05 ab	3.99 a
Mean		3.52 b	4.05 a	
LSD Seed F	Rate p = 0.05	0.18 t/ha	P val	<0.001
LSD Cultiva	ar p=0.05	0.18 t/ha	P val	0.006
LSD Seed F	Rate x Cultivar.	0.25 t/ha	P val	0.023

Table 1. Influence of plant population and cultivar on grain yield (t/ha) grown under overheadirrigation.

Table 2. Establishment - Plant population (plants/m²) established from four seed rates with two different cultivars grown under overhead irrigation.

		Established Population	
Seed Rate	HyTTec [®] Trophy	45Y28 RR	Mean
	(Hybrid TT)	(RR Y Series Hybrid)	
	Plants/m ²	Plants/m ²	Plants/m ²
20 seeds/m ²	9.5 -	9.8 -	9.6 c
40 seeds/m ²	20.0 -	14.0 -	17.0 bc
60 seeds/m ²	17.8 -	23.0 -	20.4 b
80 seeds/m ²	29.3 -	35.8 -	32.5 a
Mean	19.1 -	20.6 -	
LSD Seed Rate p = 0.05	8.4	P val	<0.001
LSD Cultivar p=0.05	ns	P val	0.7993
LSD Seed Rate x Cultivar.	ns	P val	0.4103

RR – Roundup Ready Hybrid

Table 3. Influence of plant population and cultivar on seed oil content (%) grown under overhead irrigation.

		Oil content (%)		
Plants/m ² (actual)		HyTTec [®] Trophy	45Y28 RR	Mean
Trophy	45Y28	(Hybrid TT)	(RR Y Series Hybrid)	Oil %
10	10	41.6 c	43.0 a	42.3 -
20	14	42.5 ab	42.7 a	42.6 -
18	23	41.6 c	43.1 a	42.4 -
29	36	42.0 bc	42.0 bc	42.0 -
Mean		41.9 b	42.7 a	
LSD Plant	Population p = 0.05	0.48	P val	0.089
LSD Cultivar p=0.05		0.39	P val	0.009
LSD Seed Rate x Cultivar.		0.68	P val	0.008

Released:24 February 2021

-	-			
			Dry Matter t/ha at GS62	
Plants/m ² (actual)		Plants/m ² (actual)	45Y28 RR	Mean
Trophy	45Y28	(Hybrid TT)	(RR Y Series Hybrid)	t/ha
10	10	2.87 -	3.43 -	3.15 b
20	14	3.51 -	4.96 -	4.23 a
18	23	4.72 -	4.81 -	4.77 a
29	36	4.48 -	5.68 -	5.08 a
Mean		3.90 -	4.72 -	
LSD Seed	Rate p = 0.05	1.07	P val	0.007
LSD Cultivar p=0.05		0.96	P val	0.071
LSD Seed	Rate x Cultivar	ns	P val	0.549

Table 4. Influence of plant population and cultivar on dry matter (t/ha) at early flowering (GS62) grown under overhead irrigation.

Table 5. Influence of plant population and cultivar on dry matter (t/ha) at harvest grown under overhead irrigation.

		Dry Matter t/ha at harvest		
Seedrate Plants/m ²	HyTTec®	HyTTec [®] Trophy 45Y28 RR		8 RR
	(Hybr	id TT)	(RR Y Serie	es Hybrid)
20 seeds/m² (10,10)		-	14.53	-
40 seeds/m ² (20, 14)		-		-
60 seeds/m ² (18, 23)	13.64	-	13.97	-
80 seeds/m ² (29, 36)		-	14.51	-
Mean			14.36	
LSD Seed Rate p = 0.05	ns	P val		0.898

Released:24 February 2021

Trial 2 Optimum Plant Population Under Flood Irrigation

Project objective: To compare identical plant population x cultivar canola trials under overheadand flood irrigationLocation: Finley IRCFAR Code: FAR C20-01-2Sown: 28 AprilCultivar: HyTTec® Trophy and 45Y28 RRHarvested: 27th November 2020Rotation position: Wheat (2019), Faba bean (2018) Wheat (2017)Soil Management: Wheat stubble incorporated with speed disc in AutumnIrrigation: Flood irrigation 3 x 80mm in spring. Total applied 240mm (2.4 ML/ha)GSR: April- October 244mm. Total water available 484mmAvailable Soil N: 214 kg N/ha (0 – 90cm)

Key Messages:

- Under flood irrigation and with higher available soil N (214 kg N/ha 0-90cm) seed yields were significantly higher with 45Y28 RR than HyTTec[®] Trophy with both cultivars maximising yield at higher plant populations tested (45Y28 RR 4.9t/ha (32plants/m²), HyTTec[®] Trophy- 4.01 4.11t/ha (23-31 plants/m²)).
- At 20% flowering 45Y28 RR was associated with significant higher dry matter production (4.51t/ha compared to 3.3t/ha with the TT hybrid).
- Yields cannot be statistically compared in these identical trials on flood and under lateral (Trial 1 & Trial 2) but yields on flood were approximately 0.4 & 0.2t/ha (valued at \$240 & \$120/ha at \$600/t)) higher yielding (depending on hybrid) at equivalent seed rates for the use of 1.15MegaL/ha more water.
- Establishment was poor due to heavy rain after sowing with between 30-50% plant establishment.
- As yield increased with higher plant population oil content showed a very slight decline (p=0.059) of less than 1%, but there no difference between cultivars.
- The highest yielding treatments were associated with the highest dry matter (4.96t/ha) at 20% flowering.
- Dry matter assessed at harvest was conducted only at the 60seeds/m²and revealed a harvest dry matter of 13.05t/ha with 45Y28 RR and 12.34t/ha with HyTTec[®] Trophy, leading to a harvest index of 31% and 30% respectively (data not shown).
- WUE based on an average yield of 45Y28 of 4.49t/ha was 12kg/mm.

Table 1. Influence of plant population and cultivar on grain yield (t/ha) grown with flood irrigation.

		Yield t/ha		
Plants/m ² (actual)		HyTTec [®] Trophy	45Y28 RR	Mean
Trophy	45Y28	(Hybrid TT)	(RR Y Series Hybrid)	Yield t/ha
12	11	3.37 -	4.04 -	3.70 c
15	21	3.76 -	4.58 -	4.17 b
31	18	4.01 -	4.42 -	4.22 b
24	32	4.11 -	4.90 -	4.50 a
Mean		3.81 b	4.49 a	
LSD Plant P	opulation p = 0.05	0.24	P val	0.003
LSD Cultivar p=0.05		0.18	P val	<0.001
LSD Seed Rate x Cultivar.		ns	P val	0.433

Released:24 February 2021

	Established Population			
Seed Rate	HyTTec [®] Trophy	45Y28 RR	Mean	
	Plants/m ²	Plants/m ²	Plants/m ²	
20 seeds/m ²	12.3 de	10.8 e	11.5 c	
40 seeds/m ²	15.3 cde	20.5 bc	17.9 b	
60 seeds/m ²	31 a	18.5 bcd	24.8 a	
80 seeds/m ²	23.5 b	32.3 a	27.9 a	
Mean	20.5 -	20.5 -		
LSD Plant Population p = 0.05	5.12	P val	<0.001	
LSD Cultivar p=0.05	ns	P val	1.000	
LSD Seed Rate x Cultivar.	7.24	P val	0.011	

Table 2. Establishment - Plant population (plants/m²) established from four seed rates with two different cultivars grown under overhead irrigation.

Table 3. Influence of plant population and cultivar on seed oil content (%) grown with flood irrigation.

		Oil content (%)			
Plants/m ² (actual)		HyTTec [®] Trophy	45Y28 RR	Mean	
Trophy	45Y28	(Hybrid TT)	(RR Y Series Hybrid)	Oil %	
12	11	41.8 -	42.0 -	41.9 -	
15	21	41.6 -	42.0 -	41.8 -	
31	18	41.5 -	41.4 -	41.4 -	
24	32	41.5 -	40.9 -	41.2 -	
Mean		41.6 -	41.6 -		
LSD Plant P	opulation p = 0.05	0.51	P val	0.059	
LSD Cultivar p=0.05		ns	P val	0.873	
LSD Seed Rate x Cultivar.		ns	P val	0.229	

Table 4. Influence of plant population and cultivar on dry matter at early flowering (GS62) grown with flood irrigation.

		Dry Matter (t/ha) at GS62		
Plants/m ² (actual)		HyTTec [®] Trophy	45Y28 RR	Mean
Trophy	45Y28	(Hybrid TT)	(RR Y Series Hybrid)	t/ha
12	11	2.64 -	3.85 -	3.24 -
15	21	3.11 -	4.90 -	4.01 -
31	18	3.77 -	4.32 -	4.04 -
24	32	3.67 -	4.96 -	4.32 -
Mean		3.30 b	4.51 a	
LSD Seed Rate p = 0.05		0.77	P val	0.051
LSD Cultivar p=0.05		0.54	P val	0.006
LSD Seed Rate x Cultivar.		ns	P val	0.432

Released:24 February 2021

The GRDC Optimising Irrigated Grains Project is a collaborative project including the following project partners:

Ri/erinePlains

	NDVI (0-1)			
Plant Population &	GS16	GS50	GS52	GS66
Cultivar				
HyTTec [®] Trophy				
12 plants/m ²	0.17 -	0.48 d	0.48 d	0.57 -
15 plants/m ²	0.17 -	0.54 c	0.55 c	0.59 -
31 plants/m ²	0.21 -	0.68 b	0.70 b	0.61 -
24 plants/m ²	0.20 -	0.68 b	0.68 b	0.59 -
45Y28 RR				
11 plants/m ²	0.17 -	0.57 c	0.56 c	0.60 -
21 plants/m ²	0.19 -	0.71 b	0.71 ab	0.59 -
18 plants/m ²	0.20 -	0.73 ab	0.72 ab	0.57 -
32 plants/m ²	0.22 -	0.77 a	0.76 a	0.59 -
Mean	0.19	0.64	0.64	0.59
LSD Seed Rate x Cultivar.	ns	0.06	0.05	ns
P val	0.168	0.033	0.009	0.571

 Table. 5 Normalised differential vegetation index (NDVI) of two cultivars at 4 seed rates.

Released:24 February 2021

Trial 3 Nitrogen Use Efficiency Trial – Nitrogen Rates

Project Objective: To examine at the nitrogen use efficiency of canola grown under overhead irrigation

Location: Finley IRC Sown: 27 April Harvested: 27th November 2020

FAR Code: FAR C20-04-1 Cultivar: 45Y28 RR

Rotation position: Wheat (2019), Faba beans (2018), Fallow after rice (2017) Soil Management: Wheat stubble incorporated with speed disc in Autumn Irrigation: Overhead lateral irrigation 6 x 25mm in spring. Total applied 150mm GSR: April-October 244mm. Total water available 394mm Available Soil N: 129 kg N/ha (0 – 90cm)

Key Messages:

- Following wheat, the hybrid 45Y28 RR gave a significant response to applied nitrogen that illustrated an optimum N rate for yield of approximately 160kg N/ha.
- There was no significant difference in seed yield between 160 320kg N/ha applied in this rotation position with 0.16t/ha covering the difference between the higher N rates.
- Differences in oil content were small but significant with a 1.2% oil content decline covering N rates between 80 320 N applied.
- At early flowering the unfertilised crop canopy had removed 137kg N/ha and had an average dry matter content of 5.5 t/ha compared to just over 300kg N/ha uptake and 7t/ha dry matter where the highest rate of N was applied, however the differences in DM were not significant.
- The optimum N rate of 160kg N/ha had removed approximately 238kg N/ha at the 20% flower stage indicating that approximately 110kg N/ha had been utilised if soil N supply (0-90cm) was assumed to be 100% efficient.
- At harvest there was no significant difference between dry matter (DM) content with an average DM of 15.5t/ha. Variable plant tissue analysis precluded detailed analysis of N offtake at harvest.
- The unfertilised crop removed 123 kg of N/ha at compared up to 310 kg/ha where the highest rate of N was applied.

Nitrogen Treatment Rate & Timing Total Grain yield and quality Nitrogen Yield Oil N/ha t/ha % 1. 0kg N/ha 0 3.91 d 43.0 ab 40kg N/ha@6L & 40kg N/ha@GB 2. 80 4.30 c 43.3 а 60kg N/ha@6L & 60kg N/ha@GB 4.41 bc 42.0 d 3. 120 80kg N/ha@6L & 80kg N/ha@GB 4. 160 4.55 ab 42.4 bcd 42.4 5. 100kg N/ha@6L & 100kg N/ha@GB 200 4.59 ab bcd 120kg N/ha@6L & 120kg N/ha@GB 6. 240 4.62 42.8 a-d а 7. 140kg N/ha@6L & 140kg N/ha@GB 280 4.71 a 42.9 abc 160kg N/ha@6L & 160kg N/ha@GB 320 4.71 42.1 cd 8. а Mean 4.475 42.6 LSD 0.19 0.84 P val < 0.001 0.032

Table 1. Influence of applied nitrogen fertiliser rate (split 50:50) at six leaf (6L) & Green bud (GB) on seed yield (t/ha) and oil content (%).

N applied as prilled Urea (46% N content)

RiverinePlains

Released:24 February 2021

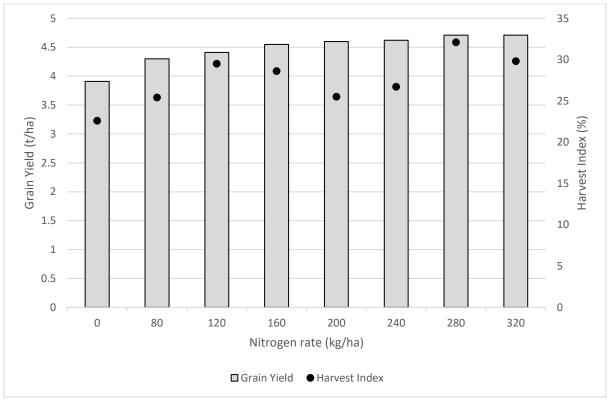


Figure 1. Influence of applied N rate on seed yield (t/ha) and harvest index (%).

Table 2. Influence of applied nitrogen rate at six leaf (6L) & Green bud (GB) on dry matter and N offtake at harvest.

Nitro	Nitrogen Treatment Rate & Timing		Dry matte	er & N offtake
		Nitrogen	Dry Matter	N removed
		N/ha	Kg/ha	Kg N/ha
1.	0kg N/ha	0	16.1 -	123 c
2.	40kg N/ha@6L & 40kg N/ha@GB	80	15.8 -	159 c
3.	60kg N/ha@6L & 60kg N/ha@GB	120	14.7 -	153 c
4.	80kg N/ha@6L & 80kg N/ha@GB	160	15.0 -	288 ab
5.	100kg N/ha@6L & 100kg N/ha@GB	200	17.1 -	171 bc
6.	120kg N/ha@6L & 120kg N/ha@GB	240	15.9 -	164 c
7.	140kg N/ha@6L & 140kg N/ha@GB	280	14.7 -	174 bc
8.	160kg N/ha@6L & 160kg N/ha@GB	320	15.0 -	310 a
	Mean		15.5	193
	LSD		4.52	123
	P Val		0.9432	0.041

Released:24 February 2021

Table 3. Influence of applied nitrogen rate at six leaf (6L) & Green bud (GB) on dry matter offtake at 20% flowering.

Nitro	Nitrogen Treatment Rate & Timing		Dry matter	& N offtake
		Nitrogen	Dry Matter	N removed
		N/ha	Kg/ha	Kg N/ha
1.	0kg N/ha	0	5.53 -	137 с
2.	40kg N/ha@6L & 40kg N/ha@GB	80	5.98 -	198 bc
3.	60kg N/ha@6L & 60kg N/ha@GB	120	6.53 -	229 b
4.	80kg N/ha@6L & 80kg N/ha@GB	160	6.49 -	238 b
5.	100kg N/ha@6L & 100kg N/ha@GB	200	5.49 -	237 b
6.	120kg N/ha@6L & 120kg N/ha@GB	240	6.41 -	234 b
7.	140kg N/ha@6L & 140kg N/ha@GB	280	6.03 -	260 ab
8.	160kg N/ha@6L & 160kg N/ha@GB	320	7.07 -	304 a
	Mean		6.19	229
	LSD		ns	65
	P val		0.489	0.002

Released:24 February 2021

Trial 4 Nitrogen Use Efficiency Trial – Nitrogen Timing Trial

Protocol Objective: To assess whether the optimum timing for applied N interacts with N rate under overhead irrigation
Sown: 28 April
Cultivar: Nuseed Diamond
Harvested: 27th November 2020
Rotation position: Wheat (2019), Faba beans (2018), Fallow after rice (2017)
Soil Management: Wheat stubble incorporated with speed disc in Autumn
Irrigation: Overhead lateral irrigation 6 x 25mm in spring. Total applied 150mm
GSR: April-October 244mm. Total water available 394mm
Available Soil N: 126 kg N/ha (0 – 90cm)

Key Messages:

- Different N timing strategies had no significant effect on seed yield irrespective of N rate applied (120, 240, 360 kg N/ha) cv Nuseed Diamond
- Applied N fertiliser significantly increased yield over the unfertilised crop but there was no significant difference between applied N rates of 120 360kg N/ha.
- Dry matter production at harvest indicated no significant differences due to either N rate or timing.
- N offtake at harvest was higher as more N was applied up to 240 Kg N/ha and was significantly greater when N was timed later in the growing season
- N offtake was higher when applied at the late timing strategy (green bud & yellow bud) than when applied at the earlier timing strategies

 Table 1. Influence of N rate and timing strategies on seed yield (t/ha) on canola grown under overhead irrigation cv Nuseed Diamond.

 Nitrogen Application Rate

	Nitrogen Application Rate					
	0kg/ha N	120kg/ha N	240kg/ha N	360kg/ha N		
Nitrogen Timing	Yield t/ha	Yield t/ha	Yield t/ha	Yield t/ha		
PSPE & 6 - Leaf	4.08 -	4.35 -	4.51 -	4.35 -		
6-Leaf & Green Bud	4.03 -	4.41 -	4.64 -	4.38 -		
Green Bud & Yellow	3.74 -	4.26 -	4.45 -	4.54 -		
Mean	3.95 b	4.34 a	4.53 a	4.43 a		
LSD N Application Timir	ng p = 0.05	ns	P val	0.626		
LSD N Application Rate p=0.05		0.20	P val	<0.001		
LSD N Timing. x N Rate.	P=0.05	ns	P val	0.592		

PSPE – Post sow pre-emergence application - broadcast

In addition to N rates specified a standard MAP application meant that all treatments received 12 kg N/ha at sowing.

Released:24 February 2021

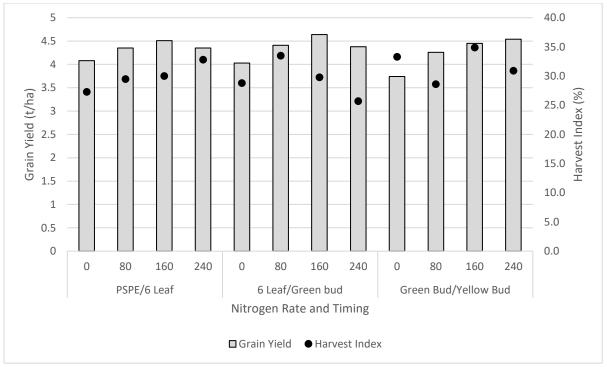


Figure 1. Influence of applied N rate and timing on grain yield (t/ha) and harvest index (%).

		Nitrogen removed at GS63 (kg N/ha)								
	0kg/ha	a N	120kg	/ha N	240kg	/ha N	360kg	/ha N	Me	an
Nitrogen Timing										
PSPE & 6 - Leaf	118 ·	-	120	-	240	-	132	-	152	-
6-Leaf & Green Bud	162 ·	-	174	-	200	-	146	-	171	-
Green Bud & Yellow Bud	146 -	-	153	-	144	-	171	-	153	-
Mean	142	b	149	b	194	а	150	b		
LSD N Application Timing p = 0.05				ns		I	P val		0.284	Ļ
LSD N Application Rate p=0.05				36		l	P val		0.071	-
LSD N Timing. x N Rat	e. P=0.0	5		ns			P val		0.136	5

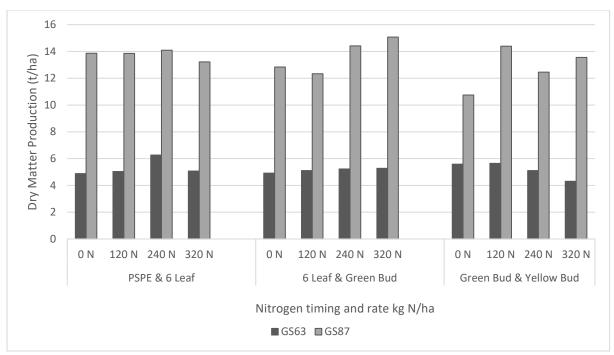
Table 2. Influence of N timing and rate (kg N/ha) on N removal in the crop canopy at early flowering.

Table 3. Influence of N timing and rate (kg N/ha) on N removal in the crop canopy at harvest.

		Nitrogen removed at harvest (kg N/ha)								
	0kg/ha	N	120kg/	ha N	240kg/l	ha N	360kg/l	na N	Me	ean
Nitrogen Timing										
PSPE & 6 - Leaf	75	-	151	-	199	-	189	-	154	b
6-Leaf & Green Bud	96	-	81	-	167	-	149	-	123	b
Green Bud &	141	-	260	-	284	-	251	-	234	а
Yellow Bud										
Mean	104	С	164	b	217	а	196	ab		
LSD N Application Timing p = 0.05			48		P۱	val			0.004	
LSD N Application Rat	e p=0.05		36		P۱	val			< 0.001	

Released:24 February 2021

The GRDC Optimising Irrigated Grains Project is a collaborative project including the following project partners:



RiverinePlains

Figure 2. Influence of applied N fertiliser rate and timing on dry matter production at early flowering (GS63) and harvest – assessed 11-Aug and 4-Nov.

Released:24 February 2021

<u>Trial 5 Influence of Fungicide Management Strategies on Blackleg and Sclerotinia Infection</u> under Overhead Irrigation

Project objective: To determine the effectiveness of fungicide strategies for a susceptible canola cultivar grown under overhead irrigation

Location: Finley IRCFSown: 28 AprilC

Harvested: 27th November 2020

FAR Code: C20-08-1 Cultivar: ATR Bonito

Rotation position: Wheat (2019), Faba beans (2018), Fallow after rice (2017) Soil Management: Wheat stubble incorporated with speed disc in Autumn Irrigation: Overhead lateral irrigation 5 x 25mm in spring. Total applied 125mm GSR: April-October 244mm. Total water available 369mm Available Soil N: 129 kg N/ha (0 – 90cm)

Key Messages:

- The trial grown under overhead irrigation was subject to branch infection of blackleg rather than crown stem canker infections (cv ATR Bonito).
- The most effective fungicide applications gave approximately 50-55% control of branch blackleg infection (incidence), with 20-30% flower sprays (applied for sclerotinia) giving 45-50% control of branch blackleg or upper canopy infection (UCI).
- No sclerotinia infection was identified in the trial.
- Despite visual observations indicating control of blackleg branch infection there were no significant yield responses in this trial to fungicide application (p=0.69).
- Control of phoma leaf spot on lower canopy leaves was recorded at approximately 45-60% when assessed at stem elongation and flowering.

 Table 1. Influence of fungicide strategy on canola seed yield (t/ha) grown under overhead irrigation.

Trea	atment mL/ha			Yield
	At sowing	4 – 6 leaf	20-30% Flower main	t/ha
			raceme	
1.	Untreated			3.59 -
2.	ILeVO seed treatment			3.64 -
	800 mL/100 kg of seed			
3.	ILeVO & flutriafol (I.F)			3.64 -
4.	ILeVO (seed trt)	Prosaro 375mL/ha		3.57 -
5.	Flutriafol (I.F)	Miravis 450mL/ha		3.72 -
6.		Miravis 450mL/ha		3.49 -
7.		Prosaro 375mL/ha		3.54 -
8.		Miravis 450mL/ha	Prosaro 450mL/ha	3.28 -
9.		Prosaro 375mL/ha	Aviator 650mL/ha	3.59 -
10.			Prosaro 450mL/ha	3.66 -
11.			Aviator 650mL/ha	3.69 -
12.	ILeVO & flutriafol (I.F)	Prosaro 375mL/ha	Aviator 650mL/ha	3.65 -
13.	Flutriafol (I.F)	Miravis 450mL/ha	Prosaro 450mL/ha	3.36 -
	Mean			3.57
	LSD			0.43
	P val			0.691

Released:24 February 2021

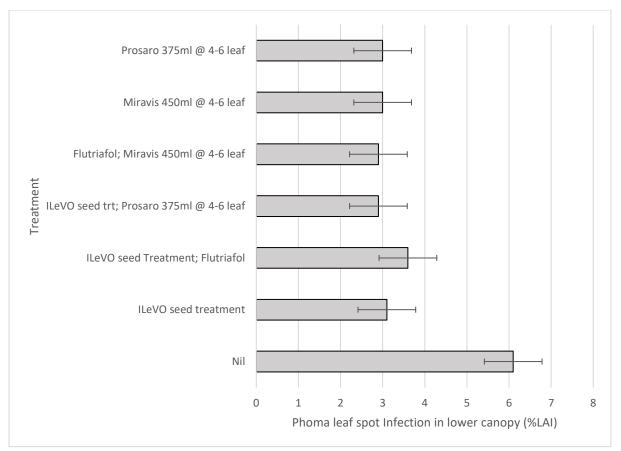


Figure 1. Influence of early season treatments on phoma leaf spot infection at stem elongation (GS50). P value < 0.001.

Released:24 February 2021

The GRDC Optimising Irrigated Grains Project is a collaborative project including the following project partners:

SOUTHERN

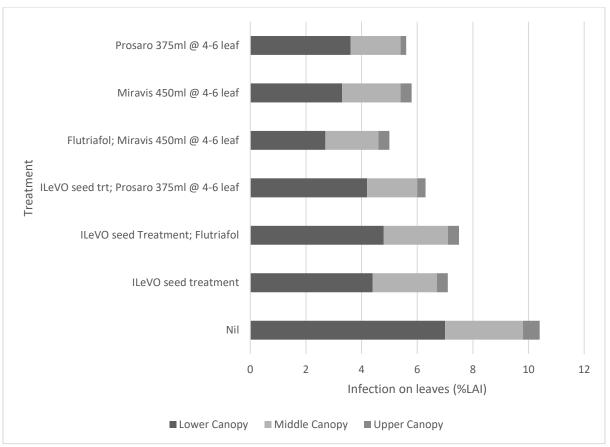


Figure 2. Influence of early season treatments on phoma leaf spot infection in the lower (LSD 1.67, P value 0.002), middle (ns, P value 0.231) and upper canopy (ns, P value 0.213) at flowering (GS67).

Treatment mL/ha	Branch Canke
harvest.	
Table 2. Influence of different fungicide strategies	on branch canker infection (% incidence) at

Trea	atment mL/ha			Branch Canker
	At sowing	4 – 6 leaf	20-30% Flower main	%
			raceme	
1.	Untreated			55 a
2.	ILeVO seed treatment			32.5 bc
	800 mL/100 kg of seed			
3.	ILeVO & flutriafol (I.F)			36.3 bc
4.	ILeVO (seed trt)	Prosaro 375mL/ha		46.3 ab
5.	Flutriafol (I.F)	Miravis 450mL/ha		32.5 bc
6.		Miravis 450mL/ha		25 c
7.		Prosaro 375mL/ha		45 ab
8.		Miravis 450mL/ha	Prosaro 450mL/ha	35 bc
9.		Prosaro 375mL/ha	Aviator 650mL/ha	26.3 c
10.			Prosaro 450mL/ha	30 c
11.			Aviator 650mL/ha	27.5 с
12.	ILeVO & flutriafol (I.F)	Prosaro 375mL/ha	Aviator 650mL/ha	37.5 bc
13.	Flutriafol (I.F)	Miravis 450mL/ha	Prosaro 450mL/ha	25 c
	Mean			34.9
	LSD			14.17
	P val			0.002

Released:24 February 2021

Trial 6 Influence of Plant Growth Regulation on Canola Yield and Profitability under Irrigation

Project objective: To examine whether experimental PGR (not commercially approved) application has any yield benefit in irrigated canola at different plant populations

Location: Finley IRC	FAR Code: C20-09-1				
Sown: 28 April	Cultivar: HyTTec [®] Trophy				
Harvested: 27 th November 2020					
Rotation position: Wheat (2019), Faba bea	ns (2018), Fallow after rice (2017)				
Soil Management: Wheat stubble incorpor	ated with speed disc in Autumn				
Irrigation: Overhead lateral irrigation 5 x 25	imm in spring. Total applied 125mm				
GSR: April-October 244mm. Total water available 369mm					
Available Soil N: 129 kg N/ha (0 – 90cm)					

Key Messages:

- Experimental PGR management (based on gibberellin inhibitors) in irrigated canola resulted in significant differences in crop canopy height but no significant effect on seed yield irrespective of plant population.
- Reducing plant population did significantly reduce crop height at green bud (GS 51) and yellow bud (GS 59), however there was no difference in crop height at mid pod or harvest due to plant population.
- The highest population (48 plants/m² 100seeds/m²) of the TT hybrid produced significantly higher yields than lower plant populations based 38plants/m² 60seeds/m² and 11 plants/m²-20 seeds/m²
- There was no benefit in harvested seed yield although the canopy was more suitable for direct heading due to its shorter stature at harvest

Table 1. Influence of PGR application and different plant populations on the seed yield (t/ha) ofHyTTec® Trophy.

Se	ed Rate & Plant popula	tion
20 seeds/m ²	60 seeds/m ²	100 seeds/m ²
11 Plants/m2	38 Plants/m2	48 Plants/m2
Yield t/ha	Yield t/ha	Yield t/ha
3.18 -	3.86 -	4.09 -
3.17 -	3.84 -	3.88 -
3.15 -	3.91 -	4.23 -
3.17 c	3.87 b	4.07 a
0.15	P val	<0.001
ns	P val	0.399
ns	P val	0.511
	20 seeds/m ² 11 Plants/m2 Yield t/ha 3.18 - 3.17 - 3.15 - 3.15 c 0.15 ns	11 Plants/m2 38 Plants/m2 Yield t/ha Yield t/ha 3.18 - 3.86 - 3.17 - 3.84 - 3.17 - 3.91 - 3.15 - 3.91 - 3.17 c 3.87 b O.15 P val ns P val

Table 2. Influence of PGR application (mean of three plant populations) on crop height (cm) assessed at GS59, GS75 and late seed fill – 10 Aug, 24 Sep & 12 Nov respectively, cv HyTTec[®] Trophy.

	Crop Height (cm)			
	GS 59	GS 75	GS 86	
Untreated	67.4 a	154.3 a	150.6 a	

Released:24 February 2021

FAR PGR20/2 @ GB FAR PGR20/1 @ GB	55.2 c 59.1 b	143.7 b 136.9 c	141.8 b 137.8 b
FAR PGR20/2 @ YB			
LSD PGR Strategy p=0.05	2.3	5.4	4.7
P val	<0.001	<0.001	0.002

Table 3. Influence of plant population (mean of PGR treatments & untreated) on crop height (cm) assessed at GS59, GS75 and late seed fill – 10-Aug, 24-Sep, and 12-Nov respectively, cv HyTTec[®] Trophy.

	Crop Height (cm)						
	GS 51	GS 59	GS 75	GS 86			
20 seeds/m2	15.5 b	59.3 b	154.5 -	150.5 -			
60 seeds/m2	29.3 a	72.3 a	154.5 -	149.5 -			
100 seeds/m2	30.8 a	70.8 a	153.8 -	151.8 -			
LSD Seed Rate	5.0	5.7	ns	ns			
P val	<0.001	0.003	0.857	0.781			

Released:24 February 2021

MFMG 🔜

• tia sfs

The GRDC Optimising Irrigated Grains Project is a collaborative project including the following project partners:

MAA

Kerang VIC

Irrigated trials conducted at the Kerang irrigated research centre 2020 were managed by the Irrigated Cropping Council

Trial 1 Optimum Plant Population Under Sprinkler Irrigation

Project objective: To compare identical plant population x cultivar canola trials under overhead and flood irrigation

Location: Kerang, Victoria Sown: 23 April Harvested: 18 November 2020 FAR Code: ICC C20-01-3 Cultivar: HyTTec[®] Trophy and 45Y28 RR

Rotation position: Dryland vetch/brown manure 2019

Soil Type: Neutral medium grey clay

Irrigation: Overhead sprinkler irrigation 4 applications totalling 108mm (1.08 ML/ha)

GSR: April-October 250mm. Total water available 358mm

Key Messages:

- Establishment rate for the trial averaged 61%.
- Seeding population of the Roundup Ready variety 45Y28 RR made no difference to plant • biomass by green bud stage. The low population of TT variety Hytec Trophy failed to 'catch up' to the higher population's biomass.
- Yield was maximised at the highest seeding rate (50 plants/ m^2 80 seeds/ m^2), but was not • significantly different to that of the 40 and 60 seeds/m² treatments in both varieties.
- 40 seeds/m^2 equates to a plant population of approximately 25 plants/m².
- Oil content was significantly different between varieties but not between seeding rates.
- While there was variation in the Harvest Index from 0.24 to 0.30, the differences were not statistically different for either seeding rate or variety.
- Water use efficiency was 15.8 kg/mm

		Established Population		
Seed Rate	HyTTec [®] Trophy	45Y28 RR	Mean	
	(Hybrid TT)	(RR Y Series Hybrid)		
	Plants/m ²	Plants/m ²	Plants/m ²	
20 seeds/m ²	12.0 c	13.4 c	12.7 d	
40 seeds/m ²	19.7 c	31.6 b	25.7 с	
60 seeds/m ²	30.9 b	41.1 a	36.0 b	
80 seeds/m ²	42.5 a	49.6 a	46.1 a	
Mean	26.3	33.9		
LSD Seed Rate p = 0.05	6.51	P val	<0.001	
LSD Cultivar p=0.05	4.60	P val	0.002	
LSD Seed Rate x Cultivar.	9.20	P val	0.4103	

Table 1. Establishment - Plant population (plants/m²) established from four seed rates with two different cultivars grown under overhead irrigation.

RR – Roundup Ready Hybrid

Table 2a. Canopy measurements – dry matter (DM t/ha).

Released:24 February 2021

				Dry matt	er (t/ha)				
Seeding Rate (seeds/m ²)	20)	4(40 6		50		80	
Green Bud									
тт	1.42	d	2.29	cd	2.46	bcd	2.49	bcd	
RR	2.87	abc	3.78	ab	3.77	ab	4.17	а	
	$p_{var} = <0.001$, p _{rate} = 0.079, p _{vxr} = 0.983, lsd _{vxr} = 1.35, cv% = 31.5								
Early Flowering									
тт	4.24	b	6.25	а	6.32	а	6.18	а	
RR	6.14	а	7.54	а	7.52	а	6.23	а	
	p _{var} = <0.00	01, p _{rate} =	0.007, p _{vxr} = 0	0.754, Isd	_{vxr} = 1.68, cv%	6 = 17.3			
Harvest									
тт	13.08	b	12.56	b	12.07	b	14.18	ab	
RR	15.21	ab	13.97	ab	14.07	ab	16.42	а	
	p _{var} = 0.018	3, p _{rate} = 0	.178, p _{vxr} = 0.	.980, lsd _{vx}	_{rr} = 3.16, cv%	= 15.4			

Table 2b. Canopy measurements – accumulated N (kg N/ha).

		Accumulated N (kg N/ha) *						
Seeding Rate (seeds/m ²)	2	20		40	60			80
Green Bud								
тт	75.3	С	113.3	bc	124.8	bc	118.3	bc
RR	156.6	a b	202.6	а	201.7	а	208.2	а
	$p_{var} = <0.001$, $p_{rate} = 0.139$, $p_{vxr} = 0.989$, lsd $_{vxr} = 66.64$, $cv\% = 30.2$							
Early Flowering								
тт	157.9	b	239.6	а	239.9	а	227.5	а
RR	229.4	а	226.1	а	265.1	а	252.5	а
	p _{var} = 0.07	75, p _{ra}	_{tte} = 0.0.049, p _v	_{ar} = 0.254,	lsd _{vxr} = 59.9,	cv% = 17	7.7	
Harvest*								
тт	233.5	а	195.0	ab	159.8	b	239.7	а
RR	194.5	a b	184.7	ab	157.2	b	200.7	ab
	p _{var} = 0.18	81, p _{ra}	_{ite} = 0.059, p _{vxr} :	= 0.800, ls	d _{vxr} = 68.4, cv	/% = 23.8	3	

*Accumulated N at harvest data should be viewed with caution as sampling errors resulted in variable nitrogen content depending on the proportion of grain in the sample tested.

The data presented in Tables 1a and 1b should be viewed with caution as there was variability in the data collected, as indicated by the high cv%.

Starting soil N was 215 kg N/ha (0-60cm). By early flowering, another 95 kg N/ha had been applied.

Released:24 February 2021

Maximum biomass achieved at harvest was 16.4 t DM/ha by 45Y28 RR at the highest sowing rate, but this was not significantly different to any of the 45Y28 RR seeding rates or the highest rate of the TT variety.

Table 3. Yield and gr	ain quality.							
Seeding Rate (seeds/m ²)	2	20 40		60		80		
		Grain Yield (t/ha)						
тт	3.25	С	3.79	b	3.79	b	4.08	i
RR	3.80	b	4.02	ab	4.30	а	4.34	
	p _{var} = 0.0	002, p _{rate}	e = 0.002, p _{vxr}	= 0.624, l	sd _{vxr} = 0.47, o	cv% = 8.0		
				Oil c	ontent (%)			
тт	40.6	b	41.1	b	40.4	b	41.1	
RR	44.7	а	44.2	а	44.1	а	44.1	
	p _{var} = <0	.001, p _{ra}	_{te} = 0.477, p _v	_{xr} = 0.258,	lsd _{vxr} = 0.87,	. cv% = 1.4		
				Har	vest Index			
тт	0.3	24	0.3	0	0.3	0	0.	.28
RR	0.1	24	0.2	8	0.2	9	0.	.25
	p _{var} = 0.4	147, p _{rate}	e = 0.077, p _{vxr}	= 0.914, l	sd _{vxr} = NS, cv	% = 16.9		

Highest yield grain was from the highest seeding rate (80 seeds/m²) in both varieties. However the yields from the 40 and 60 seeds/m² were statistically similar to that of the high seeding rate.

Oil content was only influenced by variety, not seeding rate.

While there were differences in the Harvest Index, these were not statistically significant.

The average yield for the trial was 3.92 t/ha. This represents a WUE of 15.8 kg/mm.

Released:24 February 2021

The GRDC Optimising Irrigated Grains Project is a collaborative project including the following project partners:

ab a

> b a

Trial 2 Optimum Plant Population Under Flood Irrigation

Project objective: To compare identical plant population x cultivar canola trials under overhead and flood irrigation.

Location: Kerang, VictoriaFAR Code: ICC C20-01-4Sown: 23 AprilCultivar: HyTTec® Trophy and 45Y28 RRHarvested: 18 November 2020Rotation position: Dryland vetch/brown manure 2019Soil Type: Neutral medium grey clayIrrigation: Flood irrigation 3 applications totalling 300mm (3.0 ML/ha)GSR: April-October 250mm. Total water available 550mm

Key Messages:

- Establishment rate for the trial averaged 69%.
- There were differences in biomass at green bud, with the trend to lower biomass at lower seeding rates.
- There was no difference in biomass at early flowering or harvest from any of the treatments.
- Yield was not influenced by sowing rate in either variety.
- The lowest sowing rate of 20 seeds/m² equates to a plant population of approximately 14 plants/m².
- Oil content was significantly different between varieties but not between seeding rates.
- While there was variation in the Harvest Index from 0.18 to 0.25, the trend being to lower HI at the lower rates, and vice versa.
- Water use efficiency was 8.8 kg/mm

Table 1. Establishment - Plant population (plants/m²) established from four seed rates with two different cultivars grown under overhead irrigation.

		Established Population		
Seed Rate	HyTTec [®] Trophy	45Y28 RR	Mean	
	(Hybrid TT)	(RR Y Series Hybrid)		
	Plants/m ²	Plants/m ²	Plants/m ²	
20 seeds/m ²	16.9 d	17.6 d	17.2 c	
40 seeds/m ²	26.4 cd	30.9 c	28.7 b	
60 seeds/m ²	35.1 bc	35.9 bc	35.5 b	
80 seeds/m ²	44.6 ab	46.8 a	45.7 a	
Mean				
LSD Seed Rate p = 0.05	7.46	P val	< 0.001	
LSD Cultivar p=0.05	NS	P val	0.429	
LSD Seed Rate x Cultivar.	10.55	P val	0.941	

RR – Roundup Ready Hybrid

Released:24 February 2021

Dry matter (t/ha)									
Seeding Rate (seeds/m ²)	20		4(40		60			
Green Bud									
тт	2.43	bc	3.00	bc	3.88	ab	4.24	а	
RR	2.98	bc	4.79	а	4.27	а	4.08	а	
	p_{var} = 0.068, p _{rate} = <0.001, p_{vxr} = 0.387, lsd _{vxr} = 0.954, cv% = 17.0								
Early Flowering									
тт	6.38		7.27		8.61		7.44		
RR	6.61		7.76		7.29		8.55		
	p _{var} = 0.784	4, p _{rate} = 0	.103, p _{vxr} = 0	.306, Isd _{vxr}	r = NS, cv% =	17.2			
Harvest									
тт	16.85		17.26		16.14		15.23		
RR	18.25		16.56		17.43		15.59		
	p _{var} = 0.389	9, p _{rate} = 0	.177, p _{vxr} = 0	.665, lsd vx	r = NS, cv% =	11.4			

Table 2a. Canopy measurements – dry matter (DM t/ha).

Table 2b. Canopy measurements – accumulated N (kg N/ha).

				0				
Accumulated N ((kg N/ha)								
Sowing Rate (seeds/m ²)	20		40		60		80	
Green Bud								
тт	110.1	С	159.4	abc	184.8	ab	199.3	а
RR	134.6	bc	201.3	а	204.3	а	181.7	ab
	$p_{var} = 0.068$, $p_{rate} = <0.001$, $p_{vxr} = 0.387$, lsd $_{vxr} = 40.9$, cv% = 16.2							
Early Flowering								
тт	253		236		244		239	
RR	202		267		236		271	
	p _{var} = 0.964,	p rate = 0	.808, p _{vxr} = 0.4	195, Isd _{vxr}	- = NS, cv% = 2	5.1		
Harvest*								
тт	298.8	а	267.6	а	216.7	b	257.2	ab
RR	231.9	ab	219.2	b	193.4	b	189.9	b
p_{var} = 0.008, p _{rate} = 0.125, p_{vxr} = 0.795, lsd _{vxr} = 73.7, cv% = 21.4								

*Accumulated N at harvest data should be viewed with caution as sampling errors resulted in variable nitrogen content depending on the proportion of grain in the sample tested.

The data presented in Tables 1a and 1b should be viewed with caution as there was variability in the data collected, as indicated by the high cv%.

Starting soil N was 158 kg N/ha (0-60cm). By early flowering, another 135 kg N/ha had been applied. There were differences in biomass measured at green bud, with the low seeding rate TT treatment having the lowest biomass, but not significantly different to either the low RR or 40 seeds/m² TT treatments.

Released:24 February 2021

MFMG

The GRDC Optimising Irrigated Grains Project is a collaborative project including the following project partners:

Ri√erinePlains

Maximum biomass achieved at harvest was 18.25 t DM/ha by 45Y28 RR at the lowest seeding rate, but this was not significantly different to that of any other treatment.

Grain Yield (t/ha)										
Sowing Rate (seeds/m ²)	2	0	4	0		60			8(C
π	3.36		3.96		3.	93		3.9	8	
RR	3.65		4.07		4.	01		4.1	0	
	p_{var} = 0.340, p _{rate} = 0.075, p_{vxr} = 0.958, lsd _{vxr} = NS, cv% = 11.3									
Oil content (%)										
тт	42.5	b	42.1	b	42	2.4 k)	42.	9	b
RR	45.5	а	45.3	а	45	5.4 a	1	45.	3	а
	p _{var} = <0.0	01, p _{ra}	_{te} = 0.243, p _{vxr} =	0.218, l	sd _{vxr} = 0.64	l, cv%	= 1.0			
Harvest Index										
тт	0.18	С	0.22	abc	0.	23 a	ıbc	0.2	4	ab
RR	0.19	bc	0.23	abc	0.	22 a	ıbc	0.2	5	а
	p _{var} = 0.73	3, p _{rate}	= 0.023, p _{vxr} = 0	.883, lso	d _{vxr} = 0.053	8, cv%	= 16.2			

Table 3. Yield and grain quality.

Highest yield grain was from the highest rate (80 seeds/m²) in both varieties. However the yields of all treatments were not statistically different i.e. variety or seeding rate did not affect yield.

Oil content was only influenced by variety, not sowing rate.

Harvest Index was influenced by sowing rate, with the high sowing rate of 80 seeds/m2 having the highest index of 0.25, although the results should be viewed with caution due to the high cv%.

The average yield for the trial was 3.88 t/ha. This represents a WUE of 8.8 kg/mm.

Released:24 February 2021

Trial 3 Nitrogen Use Efficiency Trial – Nitrogen Rates

Project Objective: To examine at the nitrogen use efficiency of canola grown under overhead irrigation

Location: Kerang, VictoriaFAR Code: ICC C20-03-2Sown: 23 AprilCultivar: 45Y28 RRHarvested: 18 November 2020Rotation position: Dryland vetch/brown manure 2019Soil Type: Neutral medium grey clayIrrigation: Flood irrigation 3 applications totalling 300mm (3.0 ML/ha)GSR: April-October 250mm. Total water available 550mm

Key Messages:

- Relatively high starting N at sowing (158kg N/ha 0-60cm) saw little difference in the treatment canopies as measured by NDVI despite the wide range of N application rates.
- Plant biomass was similar across all treatments at early flowering, and had produced an average of 8.2 t DM/ha.
- Plant biomass at harvest averaged 13.8 t/ha across all treatments, with the highest N rates having the highest crop biomass.
- However, grain yield was not significantly different across all treatments excluding the '0 kg N/ha' treatment.
- While there was variation in the Harvest Index from 0.26 to 0.20, the differences were not statistically different.
- Allowing for soil N at sowing and starter N there was evidence of 60 kg N/ha mineralisation at this site.

Treatments					
	15 June	15 July	luly Early Flower		Harvest*
Rate of Applied N	NDVI	NDVI	DM (t/ha) Accumulated N (kg N/ha)		DM (t/ha)
0 kg N/ha	0.70	0.85	7.64	250.9	11.19 a
80 kg N/ha	0.67	0.86	9.11	286.0	13.03 ab
120 kg N/ha	0.68	0.86	8.64	306.8	13.53 ab
160 kg N/ha	0.68	0.85	7.67	259.2	13.59 ab
200 kg N/ha	0.65	0.85	8.36	285.4	12.73 ab
240 kg N/ha	0.66	0.86	8.50	306.1	13.74 ab
280 kg N/ha	0.68	0.86	7.48	251.9	15.47 bc
320 kg N/ha	0.69	0.86	8.01	286.4	17.08 c
P val	0.773	0.042	0.352	0.592	0.013
LSD	NS	0.006	NS	NS	2.82
cv%	6.1	0.5	12.8	18.0	13.8

Table 1. Canopy measurements – NDVI, dry matter and accumulated plant N.

* Accumulated N at harvest data is not presented as sampling errors resulted in variable data that averaged half that of the N accumulated at early flowering.

Released:24 February 2021

Early season soil N was 158 kg N/ha (0-60cm) from cores taken 14 days after the trial was irrigated up. This appears to have been sufficient N to allow even canopy development until at least early flowering as indicated by the lack of difference in the NDVI measurements of the canopy, the biomass dry matter figures and the accumulated N. Although the '0 kg N/ha' treatment had the lowest early flowering biomass and accumulated N, neither were statistically different to the treatments where N was applied.

All treatments exceeded the 7 t DM/ha biomass target at early flowering, with a grand mean of 8.18 t/ha.

The '280 kg N/ha' and '320 kg N/ha' treatments were the only the only treatments to have higher biomass than that of the '0' treatment.

Treatment	Yield (t/ha)	Oil (%)	Test Weight (kg/hl)	Harvest Index
0 kg N/ha	3.00 a	45.0	64.8	0.26
80 kg N/ha	3.24 ab	44.7	65.1	0.24
120 kg N/ha	3.51 b	45.0	64.5	0.24
160 kg N/ha	3.49 b	44.9	64.8	0.24
200 kg N/ha	3.58 b	44.6	64.4	0.26
240 kg N/ha	3.57 b	44.5	64.7	0.24
280 kg N/ha	3.63 b	44.5	64.0	0.23
320 kg N/ha	3.63 b	44.2	63.9	0.20
P val	0.038	0.003	0.172	0.400
LSD	0.397	7.783	NS	NS
cv%	7.8	6.3	1.0	15.9

Table 2. Yield and grain quality.

Highest yield grain was from the two highest N rates, but these were not significantly different from the '80 kg N/ha' treatment yield.

Trial mean yield was 3.46 t/ha. WUE was 6.3 kg/mm.

While there were differences in the Harvest Index, these were not statistically significant.

Higher N application did not result in differences in grain quality.

Released:24 February 2021

Trial 4 Nitrogen Use Efficiency Trial – Nitrogen Timing Trial

Project Objective: To examine at the nitrogen use efficiency of canola grown under overhead irrigation

Location: Kerang, VictoriaFAR Code: ICC C20-04-2Sown: 23 AprilCultivar: 45Y28 RRHarvested: 18 November 2020Cultivar: 45Y28 RRRotation position: Dryland vetch/brown manure 2019Soil Type: Neutral medium grey claySoil Type: Neutral medium grey clayIrrigation: Flood irrigation 3 applications totalling 300mm (3.0 ML/ha)GSR: April-October 250mm. Total water available 550mm

Key Messages:

- Accumulated N at early flowering was 190kg N/ha from the treatments with no applied N, which represented the amount of N supplied by the soil.
- The crop responded to increasing N rate and later application.
- Higher N rate produced a decrease in oil content.
- The mean Harvest Index was 0.27, with no statistical difference between treatments.

Table 1: Treatment Summary – N application rates (kg N/ha) and timing (Growth Stage).

	•	••			
Treatments					
Intended N application	Sowing	6 leaf	Green Bud	Early Flower	
Date	29 May	8 September	18 September	4 October	Total N applied
Treatment 1	0	0	0		0
Treatment 2	40	40			80
Treatment 3	80	80			160
Treatment 4	120	120	0		240
Treatment 5		0	0		0
Treatment 6		40	40		80
Treatment 7		80	80		160
Treatment 8		120	120		240
Treatment 9			0	0	0
Treatment 10			40	40	80
Treatment 11			80	80	160
Treatment 12			120	120	240

Released:24 February 2021

Treatm	ents								
		15 June	15 July			Early Fl	owering		Harvest*
Treatm	ent	NDVI	ND	VI	DM (t/ł	na)	Accum N (kg	ulated N/ha)	DM (t/ha)
00-6l	0	0.51	0.84	ab	7.52	abc	193.4	d	11.09
00-6l	80	0.47	0.84	ab	7.01	abc	238.9	abcd	12.28
00-6l	160	0.52	0.85	а	8.25	а	292.7	а	14.91
00-6l	240	0.50	0.85	а	8.03	а	291.8	а	14.25
6l-GB	0	0.43	0.82	b	7.14	abc	225.1	abcd	9.92
6l-GB	80	0.49	0.82	b	6.63	С	216.2	bcd	15.05
6l-GB	160	0.45	0.83	ab	7.25	abc	267.6	abc	12.35
6l-GB	240	0.48	0.83	ab	6.88	abc	281.3	ab	14.57
GB-EF	0	0.45	0.83	ab	6.43	С	212.6	cd	11.41
GB-EF	80	0.46	0.83	ab	7.17	abc	200.5	cd	12.53
GB-EF	160	0.47	0.84	ab	6.57	bc	226.0	abcd	14.27
GB-EF	240	0.46	0.84	ab	6.78	abc	204.5	cd	14.12
	p timing	0.110	0.0	04	0.0	42	0.0)33	۸
	p _{N rate}	0.869	0.5	82	0.7	70	0.0)19	
	Isd _{txr}	NS	0.0	23	1.	54	69	.14	
	cv%	12.0	2.	0	15	.0	20	.20	11.5

 Table 2. Canopy measurements – NDVI, dry matter and accumulated plant N.

* Accumulated N at harvest data is not presented as sampling errors resulted in variable data that averaged half that of the N accumulated at early flowering.

^ There was significant interaction between timing and rate p $_{txr}$ = 0.026

There was some variation in the data from the initial NDVI assessment taken on June 15, probably due to slightly uneven establishment. By July 15, the analysis of the NDVI readings suggested some treatment differences but it would be difficult to attribute these to the treatments given the relatively low range of treatment means and the use of a hand held greenseeker to obtain the data.

Accumulated N at early flowering saw the average for the '0 kg N/ha' treatments being 210 kg N/ha. After subtracting the starter N, this leaves approximately 190 kg N/ha being supplied by the soil.

The trend in biomass at early flowering was for greater biomass where N had been applied earlier and at a greater rate. The trial mean for biomass at early flowering was 7.1 t/ha. Final biomass at harvest had interaction between the treatments ($p_{txr} = 0.026$) and so only the treatment means are presented. As a general observation, the higher the N rate, the more biomass, with little difference between the timings.

Released:24 February 2021

Timing	Grain (t/ł		Oil (%)	Test Weight (kg/hl)	Harvest Index
Sowing/6 leaf	3.47	С	45.8	63.4	0.25
6 leaf/Green Bud	3.73	b	45.9	64.5	0.27
Green Bud/Early Flower	4.02	а	45.9	64.3	0.29
P val	<0.0	001	0.687	0.136	0.087
LSD	0.2	38	NS	NS	NS
cv%	8.	8	1.3	1.3	16.3

 Table 3a. Influence of N timing on yield and grain quality.

Analysis of the yield data focussing on the timing of N application shows a positive response to later N application, with no response in oil content, test weight or harvest index.

Table 3b. Influence of N rate on yield and grain quality.

N rate (kg N/ha)		Grain Yie	ld (t/ha)	Oil	(%)	Test Weigh (kg/hl)	nt Harvest Index
0		3.39	b	46.7	а	64.2	0.29
80		3.57	b	46.0	b	64.1	0.25
160		3.99	а	45.5	С	64.0	0.27
240		4.02	а	45.1	С	64.6	0.27
P	val	<0.0	001	<0.0	001	0.283	0.305
	LSD	0.2	74	0.4	91	NS	NS
	cv%	8.	8	1.	3	1.3	16.3

Analysis of the yield data focussing on the rate of N application shows a positive response to the 160 kg N/ha rate, with no further increase at 240 kg N/ha. Higher rate of N application was a negative response in oil content, with no response in test weight or harvest index.

Released:24 February 2021

Yield (t/ha)				
	0 kg N/ha	80 kg N/ha	160 kg N/ha	240 kg N/ha
Sowing/6 leaf	3.41 e	3.37 e	3.53 de	3.56 de
6 leaf/Green Bud	3.23 е	3.64 de	3.95 bcd	4.12 abc
Green Bud/Early Flower	3.52 de	3.70 cde	4.49 a	4.37 ab
p _{timing} = <0.001, p _{rate} =	<0.001, p _{txr} = 0.11	17, lsd _{txr} = 0.475, cv%	6 = 8.8	
Oil (%)				
	0 kg N/ha	80 kg N/ha	160 kg N/ha	240 kg N/ha
Sowing/6 leaf	46.7 a	45.9 bc	45.2 de	45.2 de
6 leaf/Green Bud	46.7 ab	46.1 abc	45.6 cde	45.3 de
Green Bud/Early Flower	46.8 a	46.3 abc	45.8 cd	44.8 e
p_{timing} = 0.687, p_{rate} = <	<0.001, p _{txr} = <0.00	1, lsd _{txr} = 0.850, cv%	= 1.3	

 Table 4. Rate by Timing results for grain yield and oil content.

Highest yield was 4.49 t/ha where 160 kg N/ha was split between green bud and early flowering application. This treatment was not significantly different to the 240 kg N/ha applied at either the same stages or the 6 leaf/green bud treatments.

While there was a range of 0.22 to 0.30 in the Harvest Index, there were no statistical differences and the trial mean was 0.27.

Released:24 February 2021

Optimising Irrigated Grains (FAR1906-003RTX) A Grains Research & Development Corporation (GRDC) investment

PROVISIONAL HARVEST RESULTS:

Irrigated Winter and Spring **Barley Trials**

Released:24 February 2021

Finley Irrigated Research Centre NSW

Irrigated trials conducted at the Finley irrigated research centre 2020 were managed by FAR Australia, hosted by Southern Growers.

Trial 1 Nitrogen Use Efficiency Trial – Nitrogen Rates

Protocol Objective:

To evaluate nitrogen use efficiency in winter barley under different rates of applied N fertiliser applied as pre drill urea (46% N) grown under overhead irrigation (travelling lateral).

Location: Finley IRCFAR Code: FAR B20-03-1Sown: 24 AprilCultivar: CassiopeeHarvested: 28th November 2020Rotation position: Fallow (2019), Faba bean (2018), Wheat (2017)Soil Management: Cultivated with speed disc in AutumnIrrigation: Overhead lateral irrigation 5 x 25mm in spring. Total applied 125mm (1.25 ML/ha)GSR: April-October 244mm. Total water available 369mm

Key Points:

Winter barley germplasm cv Cassiopee following fallow with an estimated 226 kg N/ha available soil mineral N (0-90cm) gave no response to applied nitrogen fertiliser (Urea 46% N).

- There was no significant difference in yield due to nitrogen rate (0-320kg N/ha), with a trend suggesting declining yield as more N was applied that was linked to earlier lodging.
- The longer season and later flowering of Cassiopee and crop lodging were also contributory factors to lower grain yields and harvest indices.
- High inherent soil fertility resulted combined with 24 April sowing produced high dry matter at harvest but very poor harvest indices, ranging from 24.2% to 29.4%.
- The longer season and later flowering of Cassiopee and crop lodging were also contributory factors to lower grain yields and harvest indices.
- Protein was very high and significantly increased as more nitrogen fertiliser was applied, up to 200kg N/ha.
- There was no clear trend or significant difference in total dry matter assessed at harvest due to nitrogen rate with an average dry matter production of 20t/ha (range 19 21.5t/ha).
- Nitrogen offtake in the crop canopy at harvest (grain & straw) ranged from 232 333kg N/ha with the lower figure recoded in the zero 0 plots. Differences were not significant (p=0.059)
- N offtake in the crop canopy peaked at 333kg N/ha when 120kg N/ha was applied.

Winter barley yields produced relatively modest grain yields (5.73 – 6.52t/ha) in this first cereal situation following fallow (Table 1) with no yield response to applied nitrogen fertiliser (urea 46% N).

Released:24 February 2021

Nitro	gen Treatment Rate & Timing	Total	Grain yield	and quality
		Nitrogen	Yield	Protein
		N/ha	t/ha	%
1.	0kg N/ha	0	6.52 -	16.2 d
2.	40kg N/ha@GS30 & 40kg N/ha@GS32	80	6.09 -	17.2 cd
3.	60kg N/ha@ GS30 & 60kg N/ha@ GS32	120	6.24 -	17 d
4.	80kg N/ha@ GS30 & 80kg N/ha@ GS32	160	5.95 -	17.3 bcd
5.	100kg N/ha@ GS30 & 100kg N/ha@ GS32	200	6.02 -	18.2 abc
6.	120kg N/ha@ GS30 & 120kg N/ha@ GS32	240	5.73 -	18.5 ab
7.	140kg N/ha@ GS30 & 140kg N/ha@ GS32	280	5.84 -	18.7 a
8.	160kg N/ha@ GS30 & 160kg N/ha@ GS32	320	5.76 -	19.1 a
	Mean		6.01	17.76
	LSD		ns	1.18
	P val		0.138	<0.001

Table 1. Influence of applied nitrogen (N) rate on grain yield (t/ha) and % protein when fertiliser wasapplied at GS30 and GS32.

Lower grain yields were in contrast to high final harvest dry matter (grain and straw combined) at harvest which averaged approximately 20t/ha, an indication of a poor ability to convert dry matter produced into grain (Table 2). High dry matter production combined with later flowering (compared to RGT Planet spring barley) and lodging reduced the yield of the winter barley in this trial relative to spring barley grown in the same trials.

Table 2. Influence of applied nitrogen (N) rate on total dry matter (grain and straw) (t/ha) andnitrogen offtake (kg N/ha) at harvest when fertiliser was applied at GS30 and GS32.

Nitro	ogen Treatment Rate & Timing	Total		
		Nitrogen	Dry matter	N offtake
		N/ha	t/ha	Kg/ha
1.	0kg N/ha	0	19.87 -	232 -
2.	40kg N/ha@GS30 & 40kg N/ha@GS32	80	19.00 -	235 -
3.	60kg N/ha@ GS30 & 60kg N/ha@ GS32	120	19.94 -	333 -
4.	80kg N/ha@ GS30 & 80kg N/ha@ GS32	160	21.51 -	266 -
5.	100kg N/ha@ GS30 & 100kg N/ha@ GS32	200	19.41 -	317 -
6.	120kg N/ha@ GS30 & 120kg N/ha@ GS32	240	18.83 -	253 -
7.	140kg N/ha@ GS30 & 140kg N/ha@ GS32	280	21.23 -	265 -
8.	160kg N/ha@ GS30 & 160kg N/ha@ GS32	320	19.94 -	279 -
	Mean		19.97	273
	LSD		ns	69
	P val		0.64	0.0592

Released:24 February 2021

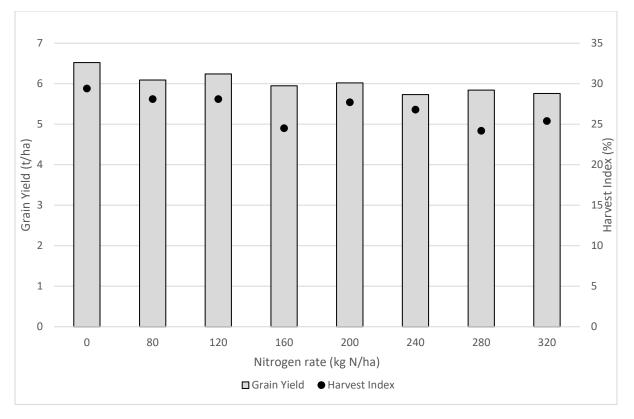


Figure 1. Grain yield and harvest index when varying nitrogen rate.

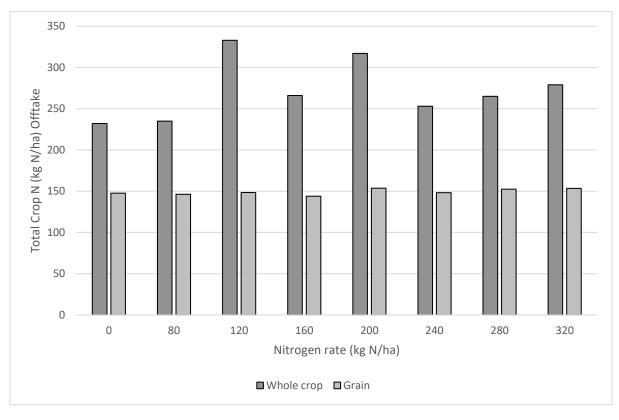


Figure 2. Nitrogen offtake when varying nitrogen rate.

Ri/erinePlains

Released:24 February 2021

MFMG

la tia

The GRDC Optimising Irrigated Grains Project is a collaborative project including the following project partners:

FAI

Irrigation Research &

Extension Committee

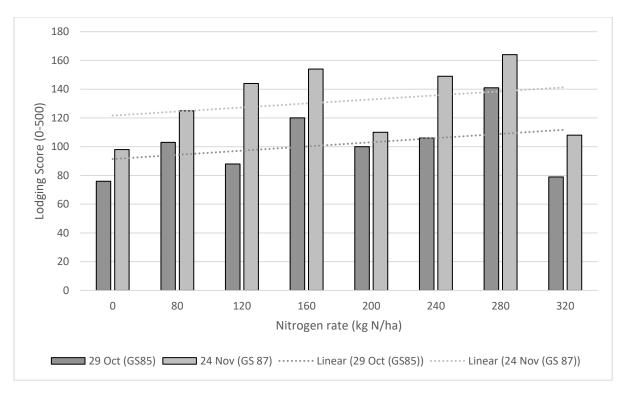


Figure 32. Lodging score (lodging index 0 – 500) when varying nitrogen rates from 0 – 320kg N/ha.

Released:24 February 2021

Trial 2 Nitrogen Use Efficiency Trial – Nitrogen Timing Trial

Protocol Objective:

To evaluate nitrogen use efficiency in winter barley under different rates and timings of applied N fertiliser applied as pre drill urea (46% N) grown under overhead irrigation (travelling lateral).

Location: Finley IRCFAR Code: FAR B20-04-1Sown: 24 AprilCultivar: CassiopeeHarvested: 28th November 2020Rotation position: Fallow (2019), Faba bean (2018), Wheat (2017)Soil Management: Cultivated with speed disc in AutumnLocation Position: Pallow (2019), Faba bean (2018), Wheat (2017)

Irrigation: Overhead lateral irrigation 5 x 25mm in spring. Total applied 125mm (1.25 ML/ha) **GSR:** April-October 244mm. Total water available 369mm

Key Points:

- With high soil fertility following fallow (226 kg N/ha available mineral N (0-60cm)) there was no significant difference in grain yield N timing (at N rates between 80 240kg N/ha).
- There was a trend for grain yields to decline with higher rates of applied N; with a significant reduction in yield at the highest rate of N applied (240kg N/ha)..
- Grain proteins were very high in all treatments and increased as higher rates of N were applied, but significantly where the N timing split was early (sowing/ tillering (GS23)) there was no effect of N rate on protein.
- With the later N timing split (pseudo stem erect/third node (GS30-33)) higher rates of N were noted to significantly increase grain protein.
- There was a significant interaction between nitrogen rate and timing on grain protein; higher protein was achieved with higher rates of nitrogen at the later timings, compared to the early timing application where N rate had no impact on grain protein.
- Nitrogen rate or timing had no significant impact on harvest dry matter with an average of just over 20t/ha in the trial.
- N offtake in the grain and straw indicated more N recovery in the N timing applied at tillering/pseudo stem erect (GS23/GS30) although this produced no significant difference in yield, grain protein or dry matter production.

Winter barley grain yields ranged from 6.14 - 6.79t/ha and were significantly higher when less nitrogen was applied (Table 1) with 0 and 80kg N/ha being significantly higher yielding than 240kg N/ha.

Released:24 February 2021

	Nitrogen Application Rate					
	0kg N/ha	80kg N/ha	160kg N/ha	240kg N/ha		
	Yield t/ha	Yield t/ha	Yield t/ha	Yield t/ha		
Sowing & GS23	6.79 -	6.65 -	6.29 -	6.16 -		
GS23 & GS30	6.59 -	6.44 -	6.46 -	6.27 -		
GS30 & GS33	6.45 -	6.58 -	6.38 -	6.14 -		
Mean	6.61 a	6.56 a	6.38 ab	6.19 b		
LSD N Application Tin	ning p = 0.05	ns	P val	0.778		
LSD N Application Rate p=0.05		0.23	P val	0.004		
LSD N Timing. x N Rat	te. P=0.05	ns	P val	0.587		

Table 1. Influence of different split N application timings (50:50 splits) and N rates on grain yield(t/ha).

Grain proteins were very high (15-18.3%) and there was a significant interaction between applied N rate and timing (p=0.016) that suggested that N rate had no effect on grain protein when fertiliser application was made early but had a significant effect when N timings were made later (Table 2).

	Nitrogen Application Rate				
	0kg N/ha	80kg N/ha	160kg N/ha	240kg N/ha	
	Protein (%)	Protein (%)	Protein (%)	Protein (%)	
Sowing & GS23	16.5 de	17.2 cd	17.3 bcd	17.2 cd	
GS23 & GS30	15.8 ef	17.3 cd	18.0 abc	18.3 ab	
GS30 & GS33	15.3 f	16.7 de	18.0 abc	18.3 a	
Mean	15.8 c	17.1 b	17.8 a	17.9 a	
LSD N Application Tir	ning p = 0.05	ns	P val	0.563	
LSD N Application Ra	te p=0.05	0.56	P val	<0.001	
LSD N Timing. x N Ra	te. P=0.05	0.96	P val	0.039	

Table 2. Protein (%) of nitrogen application rates split equally at three different application timings.

Protein figures followed by different letters are considered to be statistically different (p=0.05)

Dry matter production at harvest averaged 20.34t/ha but there was no significant differences due to timing or N rate, indicating that at higher rates of applied N fertiliser harvest indices were reduced (a smaller proportion of the dry matter produced was turned in grain) (Table 3.) Nitrogen offtake in the crop canopy as a whole was significantly higher when N application was timed at GS23 and GS30 (Table 4).

Released:24 February 2021

		Nitrogen Application Rate					
	0kg N/ha	80kgN/ha	160kg N/ha	240kg N/ha			
	DM t/ha	DM t/ha	DM t/ha	DM t/ha			
Sowing & GS23	20.72 -	18.59 -	20.58 -	21.75 -			
GS23 & GS30	20.2 -	21.17 -	20.65 -	19.77 -			
GS30 & GS33	21.52 -	20.06 -	18.49 -	20.58 -			
Mean	20.81 -	19.94 -	19.90 -	20.70 -			
LSD N Application Ti	ming p = 0.05	ns	P val	0.958			
LSD N Application Rate p=0.05		ns	P val	0.543			
LSD N Timing. x N Ra	te. P=0.05	ns	P val	0.197			

Table 3. Harvest dry matter (t/ha) of nitrogen application rates split equally at three different application timings.

DM figures followed by different letters are considered to be statistically different (p=0.05)

Table 4. Nitrogen offtake (kg/ha) of nitrogen application rates split equally at three different application timings.

		Nitrogen Application Rate				
	0kg/ha N	80kg/ha N	160kg/ha N	240kg/ha N	Mean	
	N offtake kg/ha	N offtake kg/ha	N offtake kg/ha	N offtake kg/ha	N offtake kg/ha	
Sowing & GS23	221 -	277 -	269 -	240 -	252 b	
GS23 & GS30	305 -	376 -	311 -	387 -	345 a	
GS30 & GS33	255 -	213 -	271 -	305 -	261 b	
Mean	260 -	289 -	284 -	311 -		
LSD N Application Timing p = 0.05		50	Р	val	0.007	
LSD N Application Rat	te p=0.05	ns	Р	val	0.113	
LSD N Timing. x N Rate. P=0.05		71	Р	val	0.070	

Nitrogen offtake figures followed by different letters are considered to be statistically different (p=0.05)

Released:24 February 2021

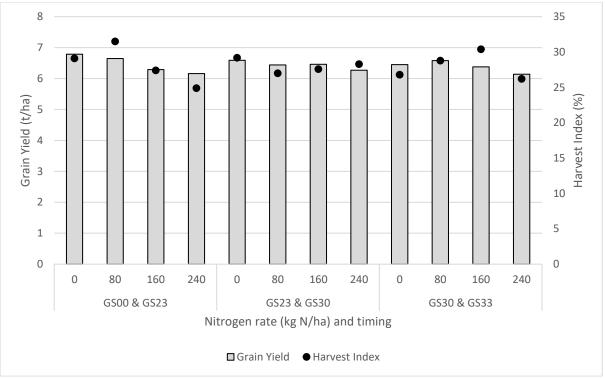


Figure 1. Grain yield and harvest index.

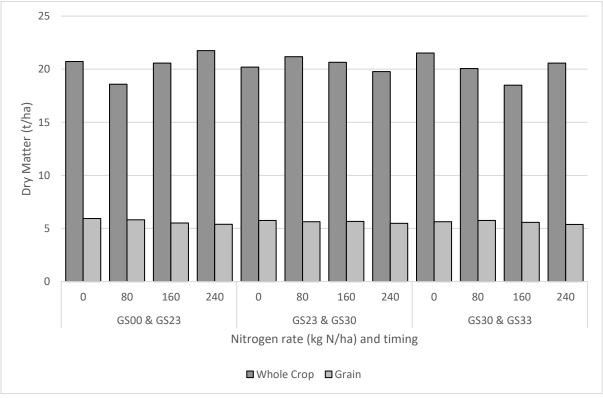


Figure 2. Dry matter offtake when varying nitrogen rate and timing.

Ri/erinePlains

Released:24 February 2021

MFMG

s tia

The GRDC Optimising Irrigated Grains Project is a collaborative project including the following project partners:

FAR

Irrigation Research &

Extension Committee

Trial 3 Lodging Control in Irrigated Crops – Winter and Spring Barley

Protocol Objective:

To compare and contrast plant growth regulation strategies in winter and spring barley germplasm.

Location: Finley IRC **FAR Code:** FAR B20-09-1 Sown: 24 April Cultivar: RGT Planet & Cassiopee Harvested: 28th November 2020 Rotation position: Fallow (2019), Faba bean (2018), Wheat (2017) Soil Management: Cultivated with speed disc in Autumn Irrigation: Overhead lateral irrigation 5 x 25mm in spring. Total applied 125mm (1.25 ML/ha) GSR: April-October 244mm. Total water available 369mm

Key Pointss:

- Under overhead irrigation in a fertile rotation position (first barley after fallow) the spring barley RGT Planet (7.27t/ha) significantly out yielded the winter cultivar Cassiopee (6.13t/ha).
- Cassiopee was subject to significantly more lodging and showed responses to PGR applications of Moddus Evo in terms of reduced crop height, lodging control and yield (although yield effects of PGRs were only statistically significant when both varieties were considered).
- In contrast, PGR application had only small effects on RGT Planet (small reductions in crop height and small differences in brackling and small increases in yield) that were in the main not significant.
- Grazing Cassiopee achieved a significant reduction in crop height (18cm) at flowering; compared to Moddus Evo at either rate which achieved a 13cm reduction in crop height
- There was significant interaction between PGR strategy and variety on plant height assessed • at GS 63 (Cassiopee) and GS65 (RGT Planet)
- Grazing winter barley at GS30 produced significantly more dry matter than grazing spring • barley that reached GS30 earlier in the winter
- There was no significant difference between lodging among treatments however there was a trend to less lodging with any treatment compared to the untreated.

The spring barley RGT Planet was significantly higher yielding than the winter barley Cassiopee grown under overhead irrigation. Cassiopee was later to develop in the spring and subject to greater lodging (Table 1 & 3). PGR application based on Moddus Evo (Trinexapac ethyl) significantly reduced crop height and lodging but greater benefit in the winter barley Cassiopee which was more lodging prone (Table 2 & 3). Grazing had similar effects on crop height and lodging but the influence was greater on Cassiopee than RGT Planet, primarily as a result of later defoliation (took longer to reach GS30) and greater dry matter (Table 3 & 4).

Released:24 February 2021

Cultivar						
	RGT Planet	Cassiopee	Mean			
	Yield t/ha	Yield t/ha	Yield t/ha			
Untreated	7.15 -	5.32 -	6.23 b			
200ml/ha Moddus Evo	7.27 -	6.57 -	6.92 a			
400ml/ha Moddus Evo	7.33 -	6.43 -	6.88 a			
Grazed at GS30	7.33 -	6.19 -	6.76 a			
Mean	7.27 a	6.13 b				
LSD Cultivar p = 0.05	0.30	P val	<0.001			
LSD PGR Strategy p=0.05	0.39	P val	0.033			
LSD Cultivar x PGR P=0.05	ns	P val	0.154			

Table 1. Influence of variety (winter v spring barley), PGR strategy and grazing on grain yield (t/ha).

Yield figures followed by different letters are considered to be statistically different (p=0.05)

Table 2. Influence of variety (winter v spring barley), PGR strategy and grazing on plant height (cm) - 29th September.

	Cultivar and growth stage				
	RGT Planet (GS65)	Cassiopee (GS63)	Mean		
	Height cm	Height cm	Height cm		
Untreated	108 b	115 a	111 a		
200ml/ha Moddus Evo	105 bc	102 c	104 b		
400ml/ha Moddus Evo	101 c	102 c	102 b		
Grazed at GS30	104 bc	97 d	101 b		
Mean	105 -	104 -			
LSD Cultivar p = 0.05	ns	P val	0.4787		
LSD PGR Strategy p=0.05	6.3	P val	0.0182		
LSD Cultivar x PGR P=0.05	4.1	P val	0.0012		

Height figures followed by different letters are considered to be statistically different (p=0.05)

Table 3. Influence of variety (winter v spring barley), PGR strategy and grazing on crop lodging $(0 - 500 \text{ scale}) - 28^{\text{th}}$ October.

	Cultivar				
	RGT Planet Cassiopee		Mean		
	Lodging 0-500	Lodging 0-500	Lodging 0-500 Yield t/ha		
Untreated	71 -	225 -	148 -		
200ml/ha Moddus Evo	10 -	62 -	36 -		
400ml/ha Moddus Evo	0 -	114 -	57 -		
Grazed at GS30	26 -	34 -	30 -		
Mean	27 b	109 a			
LSD Cultivar p = 0.05	57.7	P val	0.009		
LSD PGR Strategy p=0.05	ns	P val	0.119		
LSD Cultivar x PGR P=0.05	ns	P val	0.271		

Released:24 February 2021

The winter barley Cassiopee produced more dry matter at GS30 than RGT Planet with almost 2000kg/ha dry matter produced (Table 4). This is primarily the result of a longer vegetative period up to GS30 for dry matter production. The spring variety RGT Planet reached psuedo stem erect (GS30) (cut off for grazing in the vegetative phase) on 26th June Whilst Cassiopee reached the same growth stage on 31st July

Table 4. Influence of variety (winter v spring barley) on a single dry matter removal at GS30 (kg/haDM).

		Dry matter (kg/ha)			
Cultivar	Grazing date and GS	Pre-graze	Post Graze	DM Removed	
		kg/ha	kg/ha	kg/ha	
RGT Planet	26 June - GS30	1.14 -	0.43 b	0.72 -	
Cassiopee	31 July - GS30	2.83 -	0.89 a	1.94 -	
LSD p=0.05		1.75	0.29	ns	
P val		0.054	0.021	0.106	

Released:24 February 2021

Kerang VIC

Irrigated trials conducted at the Kerang irrigated research centre 2020 were managed by the Irrigated Cropping Council.

Trial 1 Nitrogen Use Efficiency Trial – Nitrogen Rates

Protocol Objective: To compare and contrast plant growth regulation strategies in winter and spring barley germplasm.

Location: Kerang, VictoriaFAR Code: ICC B20-03-2Sown: 17 April 2020Cultivar: CassiopeeHarvested: 8 December 2020Rotation position: Dryland vetch/brown manure 2019Soil Type: Neutral medium red clayIrrigation: Flood irrigation 4 applications totalling 400mm (4.0 ML/ha)GSR: April-October 250mm. Total water available 650mm

Key Messages:

- By GS33 visual responses to the applied N were apparent (crop height). However shoot numbers were consistent across all treatments
- Shoot loss between GS33 and GS65 was approximately 60% across the 0, 160 and 320 kg N/ha treatments higher rates of N did not maintain shoot numbers.
- Lodging began shortly after flowering, beginning with the high N plots. By harvest all plots were affected by either lodging, brackling or both.
- Highest yielding treatments were those that received 80 200 kg N/ha. 0 or high rates of N decreased yield.
- As a general trend, higher applied N resulted in higher grain protein and lower retention.

Table 1. Dry matter and shoot numbers and accumulated plant N for selected treatments assessedat GS30 (5 August), GS33 (10 September) and GS65 (9 October).

Treatments						
Applied N	GS30	GS33		GS65		
	DM (t/ha)	DM (t/ha)	Shoots/m ²	DM (t/ha)	Shoots/m ²	Accumulated N (kg N/ha)
0 kg N/ha	2.23	7.37	1006	12.09	352	134 a
160 kg N/ha		7.54	940	14.13	357	244 b
320 kg N/ha		8.02	1040	13.61	390	325 c
P val		0.803	0.272	0.06	0.356	<0.001
LSD		NS	NS	NS	NS	34.3
cv%		18.4	6.2	7.4	10.3	8.5

Soil N at sowing was 97 kg N/ha (0-60 cm) and at GS30, had been reduced to 20 kg N/ha in the '0' treatment plots prior to the first N application.

The N content of the '0' treatment at GS65 of 134 kg N/ha seems consistent with the amount of N in the soil and that added with the starter fertiliser. Assuming the '0' treatment as the base, then the

Released:24 February 2021

'320 kg N/ha' treatment took up 191 kg N/ha (60%) and the '160 kg N/ha' treatment took up 110 kg N/ha (69%) of the N applied, calculated by subtracting the 'base N' from that measured in the '320' and '160' treatments.

Higher N application did not result in higher grain yield and generally contributed to poorer retention.

Treatment	Yield (t/ha)	Protein (%)	Retention (%)	Test Weight (kg/hl)
0 kg N/ha	6.25 bc	9.8 d	94.5 a	62.0
80 kg N/ha	7.15 a	11.3 c	87.5 ab	62.5
120 kg N/ha	7.15 a	12.3 c	86.9 ab	62.0
160 kg N/ha	6.89 ab	13.8 b	86.7 abc	62.9
200 kg N/ha	6.89 ab	14.8 b	82.9 bcd	62.5
240 kg N/ha	6.06 c	15.7 ab	79.0 cd	61.8
280 kg N/ha	6.26 bc	16.1 a	76.3 d	61.5
320 kg N/ha	6.20 bc	16.1 a	80.8 bcd	63.6
P val	0.012	<0.001	0.003	0.594
LSD	0.713	1.115	7.783	NS
cv%	7.3	5.5	6.3	2.4

 Table 2. Yield and grain quality.

Figure 1. Taken 20 October – GS 77. '320 kg N/ha plot on the left, '120 kg N/ha' plot on the right.

Released:24 February 2021

Figure 2. Brackling in the '80 kg N/ha' treatment prior to harvest. The plot on the right is a '320 kg N/ha) treatment demonstrating lodging as well.

Released:24 February 2021

Optimising Irrigated Grains (FAR1906-003RTX) A Grains Research & Development Corporation (GRDC) investment

PROVISIONAL HARVEST RESULTS:

Irrigated Soil Amelioration Trials

Released:24 February 2021

Finley Irrigated Research Centre NSW

Irrigated trials conducted at the Finley irrigated research centre 2020 were managed by FAR Australia, hosted by Southern Growers.

Trial 1 Influence of Soil Amelioration and Soil Amendments on Faba Bean Yield andProfitabilityLocation: Finley IRCFAR Code: FAR F20-06a-1

Location: Finley IRCFAR Code: FAR F20-06a-1Sown: 19 May 2020Cultivar: PBA SamiraSeed rate: 170 kg/haHarvested: 30th November 2020Rotation position: Fallow (2019), Faba beans (2018), Wheat (2017)Soil Management: Cultivation with speed disc to level site after amelioration treatments in AutumnGSR/Irrigation: Overhead lateral irrigation 6 x 25mm in spring. Total applied 150mmGSR: April-October 244mm. Total water available 394mm

Key Messages:

- All treatments tested significantly out yielded the untreated control.
- There was no significant difference between the amelioration and amendment treatments, however there was a trend for treatments with organic amendment (15t/ha Lucerne pellets) applied to be higher yielding than their respective treatments without organic amendment.
- Though not statistically superior to other amendments, the highest grain yields were where gypsum and organic amendment were deep applied (35-40cm) together.
- Deep ripping alone to the same depth led to an increase in grain yield of 1.02 t/ha.
- Surface applied organic amendment based on lucerne pellets at 15t/ha gave a 0.65 t/ha grain yield advantage over the control treatment, the lowest of treatments tested but not statistically different.
- There were no significant differences in dry matter production or canopy architecture observed among the different treatments.
- Crop reflectance measurements at flowering using NDVI (0 1 scale) showed significantly greater canopy greenness where the organic amendment had been surface applied, where it was deep ripped with gypsum and where gypsum was deep ripped alone. Note with the surface applied amendment being green in colour this could have influenced the results.

Ripping Details

Ripping at the Finley site was conducted on 16, 17 & 18 March 2020. Ripping was achieved to a depth of 35-40cm. For reps 1 & 3, 3 passes were required to get to depth (2 passes pre-amendment plus 1 to apply amendment); and for reps 2 & 4, 2 passes were required (1 pass pre-amendment plus 1 to apply amendment). The deep applied organic amendment + deep applied gypsum required an extra pass to deliver the second product as the machine used was not able to apply two products together.

Released:24 February 2021

		Grain yield and quality	
		Yield	Protein
	Treatment Rate & Timing (Conducted 17-Mar 2020)	t/ha	%
1.	Nil (Control)	4.85 c	13.0 -
2.	Deep rip (tillage control)	5.87 ab	13.4 -
3.	Surface applied organic amendment (15t/ha)	5.51 b	13.0 -
4.	Deep rip; Deep applied organic amendment	6.03 ab	12.9 -
5.	Deep rip; Deep applied organic amendment; Deep		
	applied gypsum	6.17 a	13.3 -
6.	Deep applied gypsum	5.68 ab	12.6 -
	Mean	5.65	13.0
	LSD	0.54	0.5
	P val	0.002	0.068

Table 1. Influence of soil amelioration and soil amendments on crop yield (t/ha) and grain protein (%).

Organic amendment based on Lucerne pellets applied at 15t/ha, Gypsum applied at 5t/ha, Deep ripping conducted to a depth of 35-40cm after 3 passes.

Table 2. Influence of soil amelioration and soil amendments on crop reflectance measured asnormalised differential vegetation index (NDVI) on 0 -1 scale – GS 22 15-Jul, GS62 10-Sep.

		Normalised differential vegetation index (NDVI)		
	Treatment	GS22 (early vegetative)	GS62 (early flower)	
		(0-1)	(0-1)	
1.	Nil (Control)	0.315 -	0.533 c	
2.	Deep rip (tillage control)	0.310 -	0.545 bc	
3.	Surface applied organic amendment	0.318 -	0.588 a	
4.	Deep rip; Deep applied organic amendment	0.300 -	0.543 bc	
5.	Deep rip; Deep applied organic amendment; Deep applied gypsum	0.303 -	0.573 a	
6.	Deep applied gypsum	0.300 -	0.563 ab	
	Mean	0.308	0.557	
	LSD	ns	0.026	
	P val	0.465	0.004	

Released:24 February 2021

Table 3. Influence of soil amelioration and soil amendments on dry matter production at GS63 and harvest (t/ha) and canopy composition pods/m2 and height to first pod (cm) – assessed at flowering GS63 (10 Sep) and harvest (26 Nov).

	Dry Matter Production		Canopy Ar	chitecture
	GS 63	Harvest	Pod Count	1st Pod Height
	t/ha	t/ha	pod/m2	cm
Nil (Control)	2.93 -	11.36 -	435 -	21.9 -
Deep rip (tillage control)	2.98 -	11.13 -	446 -	22.7 -
Surface applied organic amendment	3.21 -	10.46 -	456 -	20.3 -
Deep rip; Deep applied organic amendment	2.91 -	11.13 -	424 -	24.4 -
Deep rip; Deep applied organic amendment; Deep applied gypsum	2.99 -	12.65 -	479 -	22.3 -
Deep applied gypsum	3.07 -	12.98 -	518 -	22.0 -
Mean	3.01	11.62	460	22.2
LSD	ns	ns	ns	ns
P val	0.781	0.553	0.360	0.826
	Deep rip (tillage control) Surface applied organic amendment Deep rip; Deep applied organic amendment Deep rip; Deep applied organic amendment; Deep applied gypsum Deep applied gypsum Mean LSD	GS 63t/ />Nil (Control)2.93-Deep rip (tillage control)2.98-Surface applied organic3.21-Surface applied organic3.21-Deep rip; Deep applied2.91-organic amendment2.99-Deep rip; Deep applied2.99-organic amendment; DeepDeep applied gypsum3.07-Mean3.07LSDn.5	GS 63Harvestt/hat/hat/haNil (Control)2.93-11.36-Deep rip (tillage control)2.98-11.13-Surface applied organic3.21-10.46-Surface applied organic2.91-11.13-Deep rip; Deep applied2.91-11.13-Deep rip; Deep applied2.99-12.65-organic amendment; Deep applied gypsum3.07-12.98-Deep applied gypsum3.07-11.62-LSDnsnsns-	GS 63 Harvest Pod Count t/ha t/ha pod/m2 Nil (Control) 2.93 - 11.36 - 435 - Deep rip (tillage control) 2.98 - 11.13 - 446 - Surface applied organic 3.21 - 10.46 - 456 - Surface applied organic 3.21 - 11.13 - 424 - Deep rip; Deep applied 2.91 - 11.62 479 - Deep rip; Deep applied 2.99 - 12.65 - 479 - Deep rip; Deep applied 3.07 - 12.98 - 518 - Deep applied gypsum 3.07 - 11.62 460 - LSD ns ns ns ns ns -

Released:24 February 2021

Kerang VIC

Irrigated trials conducted at the Kerang irrigated research centre 2020 were managed by the Irrigated Cropping Council.

Trial 1 Influence of Soil Amelioration and Soil Amendments on Faba Bean Yield and Profitability

Location: Noorong, NSW Sown: 24 April 2020 Harvested: Windrowed 19 November (to prevent grain loss) Rotation position: Dryland vetch/brown manured 2019 Soil Type: Neutral heavy grey clay, bordercheck. Irrigation: Flood irrigation 2 applications totalling 270m (2.7 ML/ha) GSR: April-October 240mm. Total water available 510mm

Key Messages:

- The ameliorants were placed shallower than planned due to the inability of the ripper to penetrate deeper than 30-32 cm despite 3 passes. The soil was not at the ideal moisture level for ripping and risked damaging the ripper if more power was applied.
- The application of the organic ameliorant had the most effect on crop biomass and grain yield.
- The site had very low soil N early in the season and so mineralisation of the organic ameliorant resulted noticeable increased vegetative growth and eventually grain yield.
- The N released through mineralisation resulted in lodging of the treatments.
- Grain yield and biomass was improved over the untreated control by all of the amelioration treatments.

Table 1: Trial treatment summary. Ripping occurred over a three-day period (March 20-23, withtreatments applied on March 24. Ripping depth achieved was 30-32 cm.

Trt.		Amendment rate
1	Untreated control	-
2	Deep rip only	-
3	Surface applied organic amendment (lucerne pellets)	15 t/ha
4	Dep applied organic amendment	15 t/ha
5	Deep applied organic amendment and gypsum	15 t/ha + 5 t/ha
6	Deep applied gypsum	5 t/ha

Released:24 February 2021

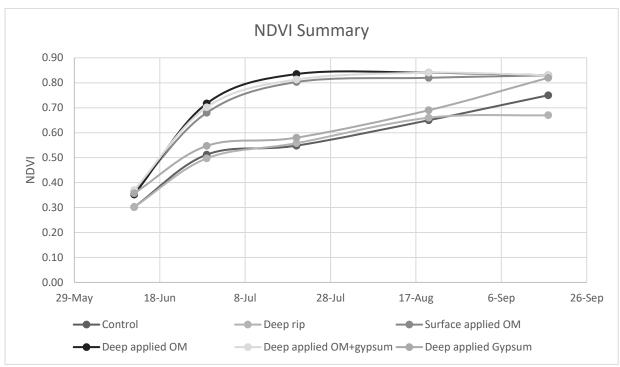


Figure 1. NDVI measurement June – September.

The site was pre-irrigated in early April, shortly after the treatments had been applied, and above average rainfall for April made the trial site quite wet/waterlogged during emergence.

Soil cores taken in early June from an untreated area of the paddock had very little N in the profile (12 kg N/ha 0-60 cm).

The treatments that received the organic ameliorant demonstrated far more growth as indicated by the NDVI measurements through the winter period. By 20 August, there was no significant difference between treatment NDVI readings, but there was a still a strong visual response. By 18 September the treatment effects on crop height were still visible, but not to the same degree as in August.

Released:24 February 2021

Figure 2. Plants from the control (LHS) and Treatment 5 (RHS) 20 August

Figure 3. Plants taken from Replicate 4 on 18 September. L-R; treatment 5, 4, 1, 2, 6, 3. Stick is 50 cm

Treatment	Plant population	Dry matte	Dry matter GS69* Dry matter GS87		Heads/m2 GS85		
1 Control	168 pl/m ²	10.71	b	7.38	С	381	С
2	193 pl/m ²	8.86	b	12.7	b	586	bc
3	185 pl/m ²	13.10	а	14.93	ab	772	ab
4	199 pl/m ²	12.74	а	16.85	а	880	а
5	196 pl/m ²	12.86	а	14.49	ab	652	ab
6	198 pl/m ²	10.37	b	13.69	ab	726	ab
P val	0.769	0.00	2	<0.0	01	0.009	
LSD	NS	2.01	2	3.32	25	234	4.7
cv%	17.8	11.7	7	16.	16.6		.5

Table 2: Canopy measurements – plant populations (plants/m2), dry matter at flowering and windrowing (t/ha).

*From replicates 3 & 4 due to inaccessibility after irrigation.

Released:24 February 2021

The influence of the organic ameliorant (OA) continued at late flowering with the higher biomass. Where it had been buried in the rip line (treatments 4 and 5), lodging was already beginning to occur. A similar pattern in biomass and heads/m² emerged at windrowing to that at GS69.

Treatment		Yield (t/ha)	Lodging Score	Harvest Index
1 Control		2.63 c	0.3 a	0.33 a
2		3.51 ab	0.3 a	0.25 b
3		4.06 a	1.8 b	0.25 b
4		3.95 a	4.0 c	0.21 b
5		2.87 b	4.5 c	0.18 b
6		3.50 ab	0.8 a	0.24 b
	P val	0.02	<0.001	0.017
	LSD	0.883	0.94	0.073
	cv%	17.1	32.5	20.2

 Table 3. Oat yield (t/ha) and grain size (g/100 seeds).

Highest yielding treatment was where 15 t/ha of OA (lucerne pellets) was placed in the rip line alone, but was not statistically different to the other treatments apart from Treatments 1 (control) and 5.

The untreated control had the lowest yield. Ripping alone did improve yield, as demonstrated by Treatment 2, as did applying N alone in the form of an OA, as in Treatment 3.

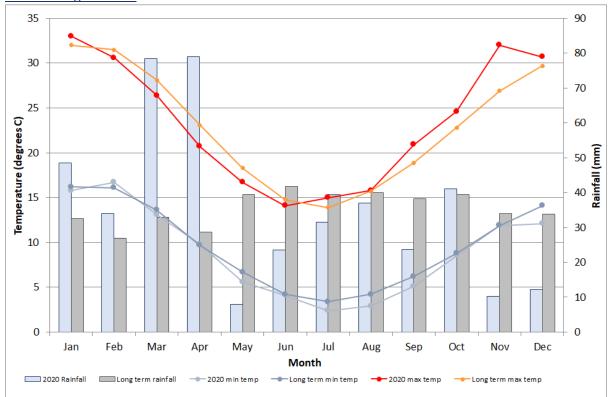
The treatments that did not receive the OA lagged through the vegetative stage of the crop development but grain yields were not significantly different to the OA treatments.

Lodging, which started to occur well before flowering in the 'rip + OA' treatments may have impacted yield. Treatment 5 had a low Harvest Index suggesting there was sufficient biomass for a higher yield but did not eventuate.

Released:24 February 2021

The GRDC Optimising Irrigated Grains Project is a collaborative project including the following project partners:

Irrigation Research & Extension Committee



Appendix

Finley Irrigated Research Centre NSW

Meteorological Data

Figure 1. 2020 annual rainfall and long-term rainfall (1897-2020) (recorded at Finley), 2020 min and max temperatures and long-term min and max temperatures (1970-2020) (recorded at Tocumwal Airport). Rainfall April to October= 244.0mm. For the period July-December, temperatures were monitored on site. Minimum temperatures were found to be 1 degree Celsius cooler and maximums 1 degree Celsius warmer on site than at Tocumwal Airport 21.5 Km away.

Released:24 February 2021

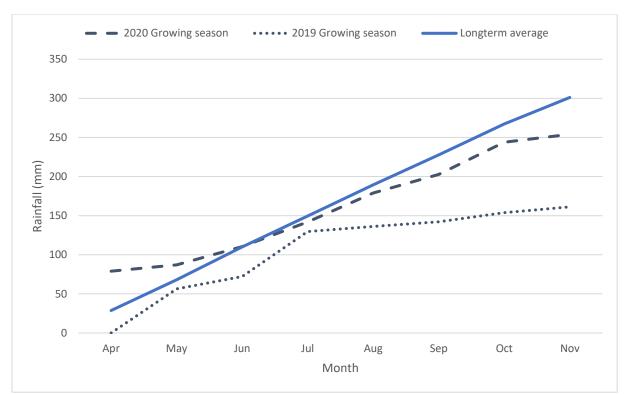


Figure 2. Cumulative growing season rainfall (April-November) for 2020, 2019, and the long-term average.

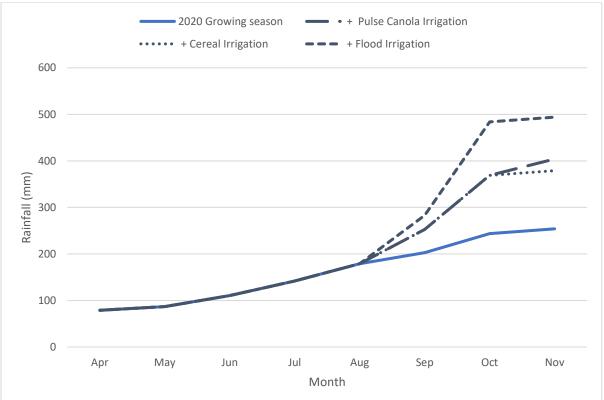


Figure 1. Cumulative 2020 growing season rainfall (April-November) plus irrigation delivered to cereal crops, pulse and canola crops and crops grown on flood irrigation.

Overhead Irrigation

Table 1. Faba bean irrigation schedule.

	0			
Date of application	Irrigation applied (mm)	Growth Stage	Plant available moisture pre irrigation	Plant available moisture post irrigation
7 Sep	25	GS63	67	96
17 Sep	25	GS64	67	98
5 Oct	25	GS74	62	94
15 Oct	25	GS76	63	94
29 Oct	25	GS79	62	91
10 Nov	25	GS81	63	93

Released:24 February 2021

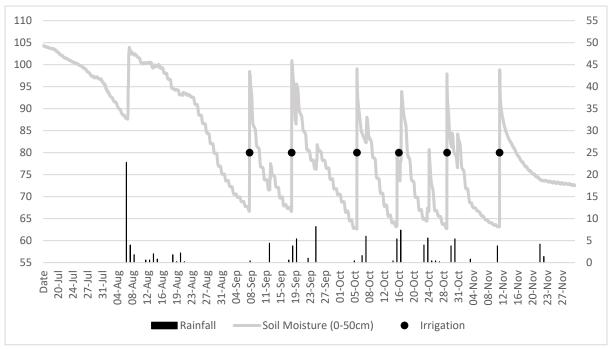


Figure 1. Linear overhead irrigation summed soil moisture data under faba beans (0-50cm).

	Table 2.	Chickpea	irrigation	schedule.
--	----------	----------	------------	-----------

Date of application	Irrigation applied (mm)	Growth Stage
7 Sep	25	V18
17 Sep	25	V20
5 Oct	25	R2
15 Oct	25	R4
29 Oct	25	R5
11 Nov	25	R6

Table 3.	Durum	irrigation	schedule.
----------	-------	------------	-----------

Date of application	Irrigation applied (mm)	Growth Stage
7 Sep	25	GS40
17 Sep	25	GS43
5 Oct	25	GS61
15 Oct	25	GS71
29 Oct	25	GS83

The GRDC Optimising Irrigated Grains Project is a collaborative project including the following project partners:

SOUTHERN

Table 4. Canola irrigation schedule. Unless otherwise stated canola trials received 125 or 150 mm/ha as overhead irrigation (1.25 – 1.5 Mega L/ha) either 5 or 6 applications. Trials 1, 5 and 6 that received 125mm/ha irrigation whilst trials 3 & 4 received 150mm/ha with an additional final irrigation applied on 11 November.

Date of application	Irrigation Growth applied (mm) Stage		Plant available moisture pre irrigation	Plant available moisture post irrigation
8 Sep	25	GS67	73	97
18 Sep	25	GS68	75	101
6 Oct	25	GS69	70	97
16 Oct	25	GS77	68	99
29 Oct	25	GS79	70	102
11 Nov	25	GS87	70	97

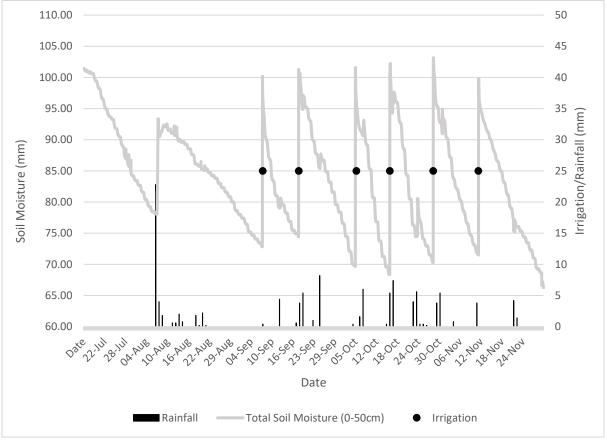


Figure 2. Overhead irrigation summed soil moisture data (0-50cm) for canola showing the effect of 6 x 25 mm/ha (total 150mm) irrigation under trial 3 & 4.

Released:24 February 2021

The GRDC Optimising Irrigated Grains Project is a collaborative project including the following project partners:

SOUTHERN

Date of application	Irrigation applied (mm)	Growth Stage (planet/cassiopee)	Plant available moisture pre irrigation	Plant available moisture post irrigation
7 Sep	25	GS 32/49	67	90
17 Sep	25	GS 43/60	72	86
5 Oct	25	GS 71/73	68	83
15 Oct	25	GS 77/85	69	82
29 Oct	25	GS 85/87	68	87

Table 5. Barley irrigation schedule.

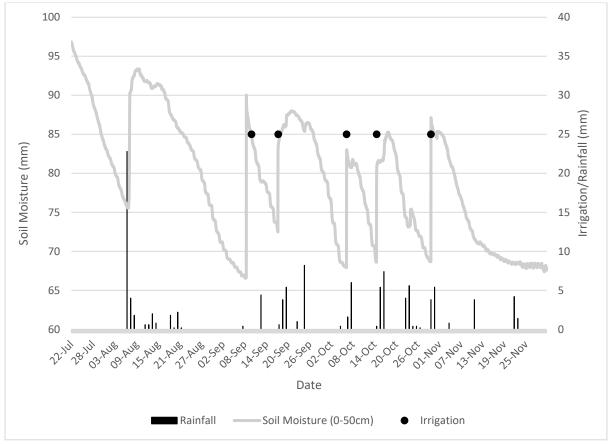


Figure 3. Linear irrigation over barley summed soil moisture data (0-50cm).

Flood Irrigation

Table 1. Faba bean irrigation sch	edule.	
Date of application	Irrigation applied (mm)	Growth Stage
10 Sep	80	GS64
4 Oct	80	GS74
28 Oct	80	GS79

Released:24 February 2021

Date of application	Irrigation applied (mm)	Growth Stage	Plant available moisture pre irrigation	Plant available moisture post irrigation
10 Sep	80	GS41	94	160
4 Oct	80	GS61	112	160
28 Oct	80	GS80	101	153

Table 2. Durum irrigation schedule.

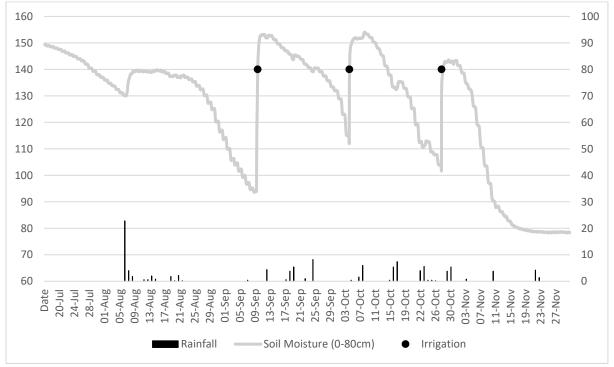


Figure 1. Durum flood irrigation summed soil moisture data (0-80cm).

Table 3. Canola irrigation schedule. Trial 2 on the flood bays received 240mm of irrigation as three applications of 80mm see table below.

Date of application	Irrigation applied (mm)	Growth Stage
10 Sep	80	GS68
4 Oct	80	GS69
28 Oct	80	GS79

Released:24 February 2021

The GRDC Optimising Irrigated Grains Project is a collaborative project including the following project partners:

SOUTHER

Crop Inputs

Table 1. Faba bean trial inputs. Unless otherwise indicated by the treatment list in the individual trials the following inputs were applied to the faba bean trials at the Finley Irrigated Research Centre.

Sowing date:			28 April
Variety:			Variable
Seed Rate:			24 Seeds/m ²
Sowing Fertilis	er:		120kg MAP
Seed Treatmer	nt		P-Pickel T @ 200 mL per 100 kg
Innoculation:			Nodulator Group E& F granular 10kg/ha
Herbicide:	27-Apr	Pre-sow	Trifluralin (500g/l) 2.0l/ha
	6-May	Pre-em	Spinnaker 70g/ha
	11-Jun	GS14	Clethodim 0.3l/ha
Fungicide:	1-Aug	12 node	Tebuconazole 145 ml/ha
	21-Sep	GS71	Veritas 1.0 l/ha

Table 2. Chickpea trial inputs. Unless otherwise indicated by the treatment list in the individual trials the following inputs were applied to the chickpea trials at the Finley Irrigated Research Centre.

Sowing date:			Variable
Variety:			Variable
Seed Rate:			30 seeds/m ²
Sowing Fertilis	ser:		120kg MAP
Seed Treatme	nt		P-Pickel T @ 200 mL per 100 kg
Herbicide:	27 Apr	Pre-sow	Trifluralin (500g/l) 2.0l/ha
	6 May	Pre-em	Spinnaker 45g/ha
	6 May	Pre-em	Simazine (900g/ka) 0.55kg/ha
	11 Jun	V6	Clethodim 0.3l/ha
Nitrogen:			none
Fungicide:	27 Aug	V19	Aviator 650 ml/ha
	2 Oct	R3	Veritas 1.0 l/ha
PGR:			none

Released:24 February 2021

Table 3. Durum trial inputs. Unless otherwise indicated by the treatment list in the individual trials the following inputs were applied to the durum trials at the Finley Irrigated Research Centre.

Sowing date:			19-May		
Variety:			Variable		
Seed Rate:	Rate: 180 seeds/				
Sowing Fertilis	ser:		120kg/ha MAP		
Seed Treatme	nt:		Vibrance at 360ml/100kg Seed, Gaucho at 120ml/100kg		
Herbicide:	23 Apr	Pre-sow	Glyphosate 540, 1.67l		
	6 May	Pre-sow	Paraquat 1.67l		
	19 May	Pre-sow	Paraquat 1.67l		
	19 May	Pre-sow	Boxer Gold 2.5l		
Insecticide:	17 Jul	GS23	Cyhella, 80 ml/ha		
Nitrogen:	5 Aug	GS31	217 kg/ha Urea (100 Kg N)		
	3 Sep	GS39	217 kg/ha Urea (100 Kg N)		
Fungicide:	1 Sep	GS39	Prosaro, 300 ml/ha		
	21 Sep	GS49	Amistar Xtra, 400 ml/ha		
PGR:	4 Sep	GS39	Errex, 1.3 l/ha		

Table 4. Canola trial inputs. Unless otherwise indicated by the treatment list in the individual trials the following inputs were applied to the canola trials at the Finley Irrigated Research Centre.

0			1 8
Sowing date:			27-28 April
Variety:			Variable
Seed Rate:			50 seeds/m ²
Sowing Fertilis	ser:		120kg/ha MAP
Seed Treatme	nt		ATR Bonito (Cruiser Opti + Maxim XL) HyTTec® Trophy – (Poncho + Maxim), 45Y28 RR – (Jockey + Poncho), Nuseed Diamond – (Poncho Plus + Saltro Duo)
Herbicide:	27-Apr	Pre-sow	Trifluralin (500g/l) 2.0l/ha
	11-Jun	GS14	Clethodim 0.3l/ha
Nitrogen:	12-Jun	GS14	46 Kg N
	1-Jul	GS16	100 Kg N
	5-Aug	GS56	150 Kg N
Fungicide:	17-Jul	GS18	Prosaro 375ml
	27-Aug	GS63	Aviator Xpro 650ml
PGR:			Nil

Released:24 February 2021

MFMG 🔜

• tia

MAA

Table 5. Barley trial inputs. Unless otherwise indicated by the treatment list in the individual trials the following inputs were applied to the barley trials at the Finley Irrigated Research Centre.

Sowing date:			24-April			
Variety:			RGT Planet & Cassiopee			
Seed Rate:			180 seeds/m ²			
Sowing Fertiliser:	:		120kg MAP			
Seed Treatment:			RGT Planet – Evergol Energy, Cassiopee - Vibrance Gaucho			
Herbicide:	23-Apr	Pre-sow	Glyphosate 540, 1.67l			
	23-Apr	Pre-sow	Boxer Gold 2.5l			
Insecticide:	17-Jul	GS29/31 (P/C)	Cyhella, 80 ml/ha			
Nitrogen:	5-Aug	GS31/33 (P/C)	80 Kg N			
	3-Sep	GS32/49 (P/C)	80 Kg N			
Fungicide:	17-Jul	GS31 (P)	Prosaro 300ml			
	27-Aug	GS39 (P)	Aviator Xpro 416ml			
	27-Aug	GS32 (C)	Prosaro 300ml			
	21-Sep	GS43 (C)	Aviator Xpro 416ml			
PGR:	4 Sep	GS32 (C)	Variable			

Growth stages – P=RGT Planet, C=Cassiopee

Soil Test Results

Table 1. Faba bean.

Paddock Name		Flo	ood - Tria	12	Overhead Trials, 1, 3,4,5 and amelioration			
Sampling Date		1	12/05/2020			12/05/2020		
Sample Depth		0-30	30-60	60-90	0-30	30-60	60-90	
		cm	cm	cm	cm	cm	cm	
Soil Colour		Brown	Red	Orange / Yellow	Brown	Brown	Orange / Yellow	
Soil Texture		Clay	Clay	Clay	Clay	Clay	Clay	
Nitrate Nitrogen	mg/kg	48	13	8.5	19	4.3	2.4	
Ammonium Nitrogen	mg/kg	2.6	<0.6	0.9	5.9	<0.6	0.8	
Nitrate Nitrogen	kg/ha	187	51	33	74	17	9	
Ammonium Nitrogen	kg/ha	10		4	23		3	
Total N	kg/ha	197	51	37	97	17	12	
Phosphorus (Colwell)	mg/kg	48	10	10	57	5	11	
Phosphorus Buffer Index (PBI-Col)		78	110	86	120	98	79	
Available Potassium	mg/kg	570	640	540	500	600	520	
Sulphur (KCl40)	mg/kg	14	7	10	15	13	16	
Organic Carbon (W&B)	%	1.3	0.2	0.2	0.9	0.2	<0.2	
pH (1:5 Water)		5.8	8.5	8.8	6.4	8.5	9.1	
pH (1:5 CaCl2)		5.1	7.9	8.2	5.5	7.7	8.3	

Released:24 February 2021

MFMG 🔜

• tia sfs

The GRDC Optimising Irrigated Grains Project is a collaborative project including the following project partners:

MAA

Electrical Conductivity (1:5 water)	dS/m	0.14	0.19	0.19	0.11	0.22	0.22
Elec. Cond. (Sat. Ext.)	dS/m	0.9	1.2	1.2	0.7	1.4	1.4
Chloride	mg/kg	15	<10	<10	15	<10	12
Calcium (Amm-acet.)	cmol(+)/kg	6.1	16.0	18.0	5.6	11.0	11.0
Potassium (Amm-acet.)	cmol(+)/kg	1.5	1.6	1.4	1.3	1.5	1.3
Magnesium (Amm-acet.)	cmol(+)/kg	4.0	9.6	11.0	4.5	9.1	10.0
Sodium (Amm-acet.)	cmol(+)/kg	0.1	0.4	0.6	0.5	1.1	1.6
Aluminium (KCl)	cmol(+)/kg	<0.1	0.1	<0.1	<0.1	<0.1	<0.1
Cation Exch. Cap.	cmol(+)/kg	11.7	27.3	30.6	11.8	23.2	24.2
Calcium/Magnesium Ratio		1.5	1.7	1.6	1.2	1.2	1.1
Sodium % of Cations (ESP)	%	1.1	1.3	1.9	4.1	4.8	6.8
Aluminium Saturation	%	<1.0	0.4	<1.0	<1.0	<1.0	<1.0
Aluminium (KCl)	mg/kg	<9.0	9.1	<9.0	<9.0	<9.0	<9.0
Calcium (Amm-acet.)	%	52	57	59	47	49	44
Magnesium (Amm-acet.)	%	34	35	35	38	39	43
Potassium (Amm-acet.)	%	12	6	4.5	11	6.6	5.5
Phosphorus Environmental Risk Index		0.62	0.09	0.12	0.48	0.05	0.14
Copper (DTPA)	mg/kg	1.00	1.00	0.75	1.50	1.00	0.89
Iron (DTPA)	mg/kg	87	9.1	9.3	170	18	11
Manganese (DTPA)	mg/kg	29	2.1	1.4	26	6.1	2.1
Zinc (DTPA)	mg/kg	2.80	0.32	0.69	1.70	0.41	0.48
Boron (Hot CaCl2)	mg/kg	1.5	2.7	4.2	1.5	3.1	5.4

Table 2. Chickpea. Paddock Name		Overhead		
Sampling Date		12/05/2020		
Sample Depth		0-30 cm	30-60 cm	60-90 cm
Soil Colour		Brown	Orange/ Yellow	Orange/ Yellow
Soil Texture		Clay	Clay	Clay
Nitrate Nitrogen	mg/kg	16	9.9	5
Ammonium Nitrogen	mg/kg	1.2	0.9	<0.6
Nitrate Nitrogen	kg/ha	62	39	20
Ammonium Nitrogen	kg/ha	5	4	
Total N	kg/ha	67	42	20
Phosphorus (Colwell)	mg/kg	40	14	9
Phosphorus Buffer Index (PBI- Col)	0.0	130	120	81
Available Potassium	mg/kg	520	410	360
Sulphur (KCl40)	mg/kg	12	13	13
Organic Carbon (W&B)	%	1	0.3	<0.2
pH (1:5 Water)		6.8	8.3	9.3
pH (1:5 CaCl2)		5.8	7.7	8.5
Electrical Conductivity (1:5 water)	dS/m	0.1	0.24	0.25
Elec. Cond. (Sat. Ext.)	dS/m	0.6	1.5	1.6
Chloride	mg/kg	14	<10	<10
Calcium (Amm-acet.)	cmol(+)/kg	5.9	10.0	12.0
Potassium (Amm-acet.)	cmol(+)/kg	1.3	1.1	0.9
Magnesium (Amm-acet.)	cmol(+)/kg	6.9	11.0	12.0
Sodium (Amm-acet.)	cmol(+)/kg	0.6	1.0	2.0
Aluminium (KCl)	cmol(+)/kg	<0.1	0.1	<0.1
Cation Exch. Cap.	cmol(+)/kg	14.6	23.5	26.8
Calcium/Magnesium Ratio		0.9	0.9	1.0
Sodium % of Cations (ESP)	%	3.7	4.4	7.5
Aluminium Saturation	%	<1.0	0.4	<1.0
Aluminium (KCl)	mg/kg	<9.0	9.1	<9.0
Calcium (Amm-acet.)	%	40	44	44
Magnesium (Amm-acet.)	%	47	47	44
Potassium (Amm-acet.)	%	9.1	4.5	3.4
Phosphorus Environmental Risk Index		0.31	0.12	0.12
Copper (DTPA)	mg/kg	1.50	1.00	0.48
Iron (DTPA)	mg/kg	140	30	7.7
Manganese (DTPA)	mg/kg	15	4.1	0.8
Zinc (DTPA)	mg/kg	0.76	0.30	0.16
Boron (Hot CaCl2)	mg/kg	2.6	3.9	6.7

Table 3. Durum.

Released:24 February 2021

MFMG **N**

• tia sfs

Paddock Name			ood - Tr			head - ⁻ 5 & 6	-		head - ⁻ 4 & 7	-
Sampling Date		12	2/05/20	020	12	2/05/20	020	12	2/05/20)20
Sample Depth		0-30 cm	30- 60 cm	60- 90 cm	0-30 cm	30- 60 cm	60- 90 cm	0-30 cm	30- 60 cm	60- 90 cm
Soil Colour		Brown	Orange/ Yellow	Orange/ Yellow	Orange/ Yellow	Orange/ Yellow	Orange/ Yellow	Brown	Orange/ Yellow	Orange/ Yellow
Soil Texture		Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay
Nitrate Nitrogen	mg/kg	38	13	5.9	25	19	12	29	16	13
Ammonium Nitrogen	mg/kg	1.5	0.7	<0.6	1	0.8	<0.6	1.2	<0.6	0.8
Nitrate Nitrogen	kg/ha	148	51	23	98	74	47	113	62	51
Ammonium Nitrogen	kg/ha	6	3		4	3		5		3
Total N	kg/ha	154	53	23	101	77	47	118	62	54
Phosphorus (Colwell)	mg/kg	45	<5	9	31	8	<5	34	<5	11
Phosphorus Buffer Inde	x (PBI-Col)	65	110	94	74	92	83	78	110	95
Available Potassium	mg/kg	430	470	400	280	320	300	490	550	420
Sulphur (KCl40)	mg/kg	13	13	30	10	15	32	12	8	11
Organic Carbon (W&B)	%	1.2	0.3	<0.2	0.9	0.3	<0.2	1.2	0.3	<0.2
pH (1:5 Water)		6.2	8.8	9.4	6.6	8.8	9.3	6	8.4	9.1
pH (1:5 CaCl2)		5.4	7.9	8.5	5.6	7.9	8.5	5.2	7.8	8.3
Electrical Conductivity (1:5 water)	dS/m	0.13	0.22	0.32	0.1	0.24	0.31	0.11	0.22	0.25
Elec. Cond. (Sat. Ext.)	dS/m	0.8	1.4	2.0	0.6	1.5	1.9	0.7	1.4	1.6
Chloride	mg/kg	24	25	57	11	26	34	<10	<10	<10
Calcium (Amm-acet.)	cmol(+)/kg	4.6	6.9	14.0	4.7	6.5	14.0	5.8	11.0	19.0
Potassium (Amm- acet.)	cmol(+)/kg	1.1	1.2	1.0	0.7	0.8	0.8	1.3	1.4	1.1
Magnesium (Amm- acet.)	cmol(+)/kg	4.2	11.0	11.0	5.8	13.0	13.0	4.8	12.0	14.0
Sodium (Amm-acet.)	cmol(+)/kg	0.6	2.0	2.5	0.7	2.5	2.8	0.2	0.7	1.3
Aluminium (KCl)	cmol(+)/kg	0.1	<0.1	<0.1	0.1	<0.1	<0.1	0.1	0.1	0.1
Cation Exch. Cap.	cmol(+)/kg	10.5	21.5	29.2	12.1	23.1	30.5	12.2	25.3	35.1
Calcium/Magnesium Ratio		1.1	0.6	1.3	0.8	0.5	1.1	1.2	0.9	1.4
Sodium % of Cations (ESP)	%	5.2	9.4	8.7	6.1	11.0	9.1	1.8	2.8	3.8
Aluminium Saturation	%	1.0	<1.0	<1.0	0.9	<1.0	<1.0	0.9	0.4	0.3
Aluminium (KCl)	mg/kg	9.8	<9.0	<9.0	10	<9.0	<9.0	9.7	9.1	10
Calcium (Amm-acet.)	%	44	32	49	39	28	45	48	45	54
Magnesium (Amm- acet.)	%	40	53	39	48	58	43	40	46	39
Potassium (Amm- acet.)	%	11	5.6	3.5	5.8	3.5	2.5	10	5.6	3.1

The GRDC Optimising Irrigated Grains Project is a collaborative project including the following project partners:

Irrigation Research & FAR

MAA

Phosphorus Environm Index	nental Risk	0.69	0.05	0.09	0.42	0.09	0.06	0.44	0.05	0.12
Copper (DTPA)	mg/kg	0.98	0.91	0.62	0.91	0.87	0.53	1.10	1.00	0.78
Iron (DTPA)	mg/kg	96	12	7.8	73	14	6.7	110	11	8.5
Manganese (DTPA)	mg/kg	22	2.8	1.2	14	2.5	0.8	15	2.8	0.9
Zinc (DTPA)	mg/kg	3.70	0.18	0.11	1.40	0.28	0.10	1.00	0.88	0.51
Boron (Hot CaCl2)	mg/kg	1.8	5.0	7.2	2.0	6.5	8.8	2.0	3.5	6.8

Table 4. Canola.

Paddock Name		Flo	ood - Tri	al 2	Overhead Trial 1 & 5		Overhead Trial 3, 4 & 6			
Sampling Date		12/05/2020		12/05/2020			12/05/2020			
Sample Depth		0-30 cm	30- 60 cm	60- 90 cm	0-30 cm	30- 60 cm	60- 90 cm	0-30 cm	30- 60 cm	60- 90 cm
Soil Colour		Brown	Orange/ Yellow	Orange/ Yellow	Brown	Brown	Orange/ Yellow	Brown	Orange/ Yellow	Orange/ Yellow
Soil Texture		Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay
Nitrate Nitrogen	mg/kg	38	8.9	5.2	19	4.3	2.4	16	9.9	5
Ammonium Nitrogen	mg/kg	2.7	<0.6	<0.6	5.9	<0.6	0.8	1.2	0.9	<0.6
Nitrate Nitrogen	kg/ha	148	35	20	74	17	9	62	39	20
Ammonium Nitrogen	kg/ha	11			23		3	5	4	
Total N	kg/ha	159	35	20	97	17	12	67	42	20
Phosphorus (Colwell)	mg/kg	48	<5	<5	57	5	11	40	14	9
Phosphorus Buffer Inde	ex (PBI-Col)		89	98	90	120	98	79	130	120
Available Potassium	mg/kg	440	490	430	500	600	520	520	410	360
Sulphur (KCl40)	mg/kg	11	5	13	15	13	16	12	13	13
Organic Carbon (W&B)	%	1.2	0.2	<0.2	0.9	0.2	<0.2	1	0.3	<0.2
pH (1:5 Water)		5.9	8.9	9.2	6.4	8.5	9.1	6.8	8.3	9.3
pH (1:5 CaCl2)		5	8	8.4	5.5	7.7	8.3	5.8	7.7	8.5
Electrical Conductivity (1:5 water)	dS/m	0.12	0.19	0.26	0.11	0.22	0.22	0.1	0.24	0.25
Elec. Cond. (Sat. Ext.)	dS/m	0.7	1.2	1.6	0.7	1.4	1.4	0.6	1.5	1.6
Chloride	mg/kg	17	<10	11	15	<10	12	14	<10	<10
Calcium (Amm-acet.)	cmol(+)/kg	4.9	9.6	15.0	5.6	11.0	11.0	5.9	10.0	12.0
Potassium (Amm- acet.)	cmol(+)/kg	1.1	1.3	1.1	1.3	1.5	1.3	1.3	1.1	0.9
Magnesium (Amm- acet.)	cmol(+)/kg	4.2	11.0	12.0	4.5	9.1	10.0	6.9	11.0	12.0
Sodium (Amm-acet.)	cmol(+)/kg	0.4	1.4	1.8	0.5	1.1	1.6	0.6	1.0	2.0
Aluminium (KCl)	cmol(+)/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1
Cation Exch. Cap.	cmol(+)/kg	10.8	23.4	29.4	11.8	23.2	24.2	14.6	23.5	26.8

Released:24 February 2021

The GRDC Optimising Irrigated Grains Project is a collaborative project including the following project partners:

Irrigation Research & FAR

MAA

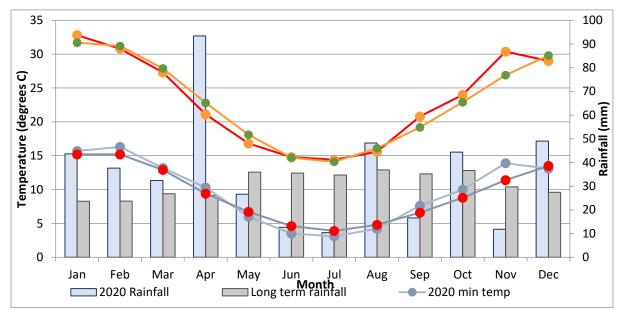
Calcium/Magnesium Ratio		1.2	0.9	1.3	1.2	1.2	1.1	0.9	0.9	1.0
Sodium % of Cations (ESP)	%	3.8	6.0	6.2	4.1	4.8	6.8	3.7	4.4	7.5
Aluminium Saturation	%	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	0.4	<1.0
Aluminium (KCl)	mg/kg	9.6	<9.0	<9.0	<9.0	<9.0	<9.0	<9.0	9.1	<9.0
Calcium (Amm-acet.)	%	45	41	50	47	49	44	40	44	44
Magnesium (Amm- acet.)	%	39	48	40	38	39	43	47	47	44
Potassium (Amm- acet.)	%	10	5.4	3.8	11	6.6	5.5	9.1	4.5	3.4
Phosphorus Environme Index	ntal Risk		0.54	0.05	0.06	0.48	0.05	0.14	0.31	0.12
Copper (DTPA)	mg/kg	1.00	0.84	0.63	1.50	1.00	0.89	1.50	1.00	0.48
Iron (DTPA)	mg/kg	92	10	9.1	170	18	11	140	30	7.7
Manganese (DTPA)	mg/kg	27	2.6	1.1	26	6.1	2.1	15	4.1	0.8
Zinc (DTPA)	mg/kg	3.10	0.76	0.37	1.70	0.41	0.48	0.76	0.30	0.16
Boron (Hot CaCl2)	mg/kg	1.7	3.8	6.8	1.5	3.1	5.4	2.6	3.9	6.7

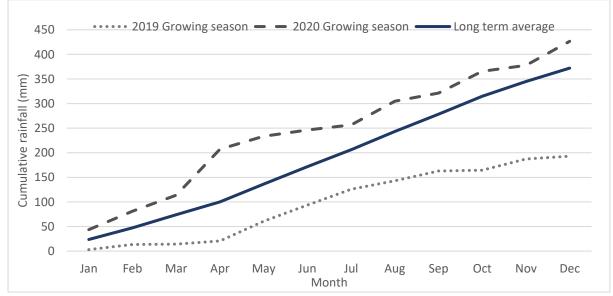
Table 5. Barley.

Table 5. Balley.							
Paddock Name		Barley					
Sampling Date			12/05/2020				
Sample Depth		0-30 cm	30-60 cm	60-90 cm			
Soil Colour		Brown	Orange/ Yellow	Orange/ Yellow			
Soil Texture		Clay	Clay	Clay			
Nitrate Nitrogen	mg/kg	29	16	13			
Ammonium Nitrogen	mg/kg	1.2	<0.6	0.8			
Nitrate Nitrogen	kg/ha	113	62	51			
Ammonium Nitrogen	kg/ha	5		3			
Total N	kg/ha	118	62	54			
Phosphorus (Colwell)	mg/kg	34	<5	11			
Phosphorus Buffer Index (PBI-Col)		78	110	95			
Available Potassium	mg/kg	490	550	420			
Sulphur (KCl40)	mg/kg	12	8	11			
Organic Carbon (W&B)	%	1.2	0.3	<0.2			
pH (1:5 Water)		6	8.4	9.1			
pH (1:5 CaCl2)		5.2	7.8	8.3			
Electrical Conductivity (1:5 water)	dS/m	0.11	0.22	0.25			
Elec. Cond. (Sat. Ext.)	dS/m	0.7	1.4	1.6			
Chloride	mg/kg	<10	<10	<10			
Calcium (Amm-acet.)	cmol(+)/kg	5.8	11.0	19.0			
Potassium (Amm-acet.)	cmol(+)/kg	1.3	1.4	1.1			
Magnesium (Amm-acet.)	cmol(+)/kg	4.8	12.0	14.0			
Sodium (Amm-acet.)	cmol(+)/kg	0.2	0.7	1.3			

Released:24 February 2021

Aluminium (KCl)	cmol(+)/kg	0.1	0.1	0.1
Cation Exch. Cap.	cmol(+)/kg	12.2	25.3	35.1
Calcium/Magnesium Ratio		1.2	0.9	1.4
Sodium % of Cations (ESP)	%	1.8	2.8	3.8
Aluminium Saturation	%	0.9	0.4	0.3
Aluminium (KCl)	mg/kg	9.7	9.1	10
Calcium (Amm-acet.)	%	48	45	54
Magnesium (Amm-acet.)	%	40	46	39
Potassium (Amm-acet.)	%	10	5.6	3.1
Phosphorus Environmental Risk Index		0.44	0.05	0.12
Copper (DTPA)	mg/kg	1.10	1.00	0.78
Iron (DTPA)	mg/kg	110	11	8.5
Manganese (DTPA)	mg/kg	15	2.8	0.9
Zinc (DTPA)	mg/kg	1.00	0.88	0.51
Boron (Hot CaCl2)	mg/kg	2.0	3.5	6.8





Kerang VIC

Meteorological Data

Figure 1. 2020 annual rainfall and long-term rainfall (1880-2020) (recorded at Kerang), 2020 min and max temperatures and long-term min and max temperatures (1903-2020) (recorded at Kerang). Rainfall April to October= 252.2mm.

Figure 2. Cumulative growing season rainfall (April-November) for 2020, 2019, and the long-term average.

Released:24 February 2021

la cia

MFMG

The GRDC Optimising Irrigated Grains Project is a collaborative project including the following project partners:

FA

Irrigation Research &

Extension Committee

RiverinePlains

Irrigation Schedule

Overhead irrigation

Table 1. Faba bean sprinkler irrigation schedule.

	Irrigation Applied (mm)
Date	Trial 1
1-Sep	28
8-Sep	15
15-Sep	30
29-Sep	28
12-Oct	28
Total	129

Table 2. Durum wheat sprinkler irrigation schedule.

	Irrigation Applied (mm)
Date	Trial 1
1-Sep	25
4-Sep	15
16-Sep	28
30-Sep	28
1-Oct	28
9-Oct	28
19-Oct	28
7-Nov	28
Total	208

Table 3. Canola sprinkler irrigation schedule.

	Irrigation Applied (mm)
Date	Trial 1
28-Aug	26
14-Sep	26
24-Sep	30
14-Oct	30
Total	112

Released:24 February 2021

Flood irrigation

Table 1. Faba bean flood irrigation schedule.

	Irrigation Applied (mm)
Date	Trial 2, 3 & 4
9-Apr	150
9-Sep	90
7-Oct	90
Total	330

Table 2. Chickpea flood irrigation schedule.

		Irrigation Applied (mm)				
Date	Trial 1	Trial 2	Trial 3			
9-Apr		150				
24-Apr	150		130			
1-Sep		70				
7-Sep	80		80			
23-Sep		70				
Total	230	290	210			

Table 3. Durum wheat flood irrigation schedule.

		Irrigation Applied (mm)				
Date	Trial 2	Trial 3, 4	Trial 5, 6 & 7			
9-Apr		150				
24-Apr	150		150			
8-Sep			80			
9-Sep	80	80				
7-Oct	100	100	100			
4-Nov	100					
6-Nov		100				
7-Nov			100			
Total	430	430	430			

Table 4. Canola flood irrigation schedule

	Irrigation Applied (mm)
Date	Trial 2, 3 & 4
24-Apr	130
9-Sep	90
7-Oct	80
Total	300

Released:24 February 2021

MFMG 🔍

• tia sfs

	Irrigation Applied (mm)
Date	Trial 1
8-Apr	150
17-Aug	80
23-Sep	90
14-Oct	80
Total	400

Table 5. Barley flood irrigation schedule.

 Table 6. Amelioration trial irrigation flood schedule.

	Irrigation Applied (mm)
Date	Trial 1
2-Apr	150
13-Oct	120
Total	270

Crop Inputs

Table 1. Faba bean trial inputs. Unless otherwise indicated by the treatment list in the individual trials the following inputs were applied to the faba bean trials at the Kerang Irrigated Research Centre.

Centrel							
Sowing Date:			8-May				
Variety:			Variable				
Seed Rate:			25 plants/m2				
Sowing Fertili	ser:	250kg Superfect					
Seed Treatme	ent:		Gaucho 600 120ml/100 kg				
Herbicide:	7-May	Pre-sow	Glyphosate 540 1.5l/ha				
	29-May	Pre-sow	Goal 75ml/ha				
		Pre-sow	Terrain 180 g/ha				
	1-Jul	Vegetative	Factor 180 g/ha				
Nitrogen:			Nil				
Fungicide:	6-Aug	Vegetative	Chlorothalonil 1.5 l/ha	Trials 1&2			
	7-Sep	Early Flowering	Chlorothalonil 1.5 l/ha	Trials 1&2			
	7-Oct	Early podding	Chlorothalonil 1.5 l/ha	Trials 1&2			
PGR:			Nil				

Released:24 February 2021

Table 2. Chickpea trial inputs. Unless otherwise indicated by the treatment list in the individual trials the following inputs were applied to the faba bean trials at the Kerang Irrigated Research Centre.

Sowing Date:			18-May				
Variety:		Variable					
Seed Rate:		35 Plants/m2					
Sowing Fertili	ser:	250kg Superfect					
Seed Treatme	nt:		Nil				
Inoculum:			Alosca granules 10kg/ha				
Herbicide:	17-May	Pre-sow	Glyphosate 540 1.5l/ha	Trials 1,3			
	17-May	Pre-sow	Goal 75ml/ha	Trials 1,3			
	17-May	Pre-sow	Terrain 180 g/ha	Trials 1,3			
	10-May	Pre-sow	Glyphosate 540 1.5l/ha	Trial 2			
	10-May	Pre-sow	Goal 75ml/ha	Trial 2			
	10-May	Pre-sow	Terrain 180 g/ha	Trial 2			
	15-Jun	Vegetative	Clethodim 240 500 ml/ha	Trial 2			
Nitrogen:			Nil				
Fungicide:	4-Aug	8 Node	Chlorothalonil 1.5 l/ha	Trial 1			
	6-Sep	Early flowering	Chlorothalonil 1.5 l/ha	Trial 1			
	28-Aug	Early flowering	Chlorothalonil 1.5 l/ha	Trial 2			
	21-Sep	Late flowering	Chlorothalonil 1.5 l/ha	Trial 2			
PGR:			Nil				

Table 3. Durum wheat trial inputs. Unless otherwise indicated by the treatment list in the individual trials the following inputs were applied to the faba bean trials at the Kerang Irrigated Research Centre.

Sowing Date:			29-May				
Variety:			Variable				
Seed Rate:			160 plants/m2				
Sowing Fertili	iser:		125kg DAP				
Seed Treatme	ent:		Vibrance 180 g/100 kg				
Herbicide:	7-May	Fallow	Gramoxone 250 2l/ha				
	29-May	Pre-sow	Glyphosate 540 1.5l/ha				
		Pre-sow	Goal 75ml/ha				
		Pre-sow	Boxer Gold 2.5l/ha				
	7-Aug	Tillering	Triathlon 1l/ha				
Nitrogen:	8-Sep	GS32	100 kg N/ha	Trials 2,5,6,7			
	18-Sep	GS37	100 kg N/ha	Trials 2,5,6,7			
	4-Oct	GS55	115 kg N/ha	Trials 2,5,6,7			
	8-Sep	GS32	55 kg N/ha	Trial 1			
	18-Sep	GS37	100 kg N/ha	Trial 1			
	4-Oct	GS55	90 kg N/ha	Trial 1			
Fungicide:	26-Sep	GS39	0.25 l/ha Tilt Xtra	Trials 1&2			

Released:24 February 2021

	21-Sep	GS39	0.25 l/ha Tilt Xtra	Trial 4
	4-Oct	GS55	0.25 l/ha Tilt Xtra	Trial 7
PGR:	17-Aug	GS31-32	0.4 l/ha Moddus Evo	Trial 4
	4-Sep	GS32	0.4 l/ha Moddus Evo	Trials 1,2,5,6

Table 4. Canola trial inputs. Unless otherwise indicated by the treatment list in the individual trials the following inputs were applied to the faba bean trials at the Kerang Irrigated Research Centre.

Sowing Date:			23-Apr			
Variety:			Variable			
Seed Rate:		40 Plants/m2				
Sowing Fertili	ser:	125kg DAP				
Seed Treatme	ent:		HyTTec® Trophy – (Poncho + Maxim), 45Y28 RR – (Jockey + Poncho			
Herbicide:	5-Jun	4 leaf	Clethodim 240 500 ml/ha	Trials 1,2		
	5-Jun	4 leaf	Lontrel Adv 125ml/ha	Trials 1,2		
	15-Jun	5-6 leaf	Roundup Plantshield 900 g/ha	Trials 3,4		
Nitrogen:	1-Jul	8 leaf	55kg N/ha	Trial 1		
	6-Aug	Green Bud	40kg N/ha	Trial 1		
	1-Jul	8 leaf	55kg N/ha	Trial 2		
	6-Aug	Green Bud	80kg N/ha	Trial 2		
Fungicide:			Nil			
PGR:			Nil			

Table 5. Barley trial inputs. Unless otherwise indicated by the treatment list in the individual trialsthe following inputs were applied to the faba bean trials at the Kerang Irrigated Research Centre.

Sowing Date:			17-Apr
Variety:			Cassiopee
Seed Rate:		160 plants/m2	
Sowing Fertili	ser:		125kg DAP
Seed Treatme	ent:		Nil
Herbicide:	16-Apr	Pre-sowing	Glyphosate 540 1.5 l/ha
	16-Apr	Pre-sowing	Goal 75 ml/ha
	16-Apr	Pre-sowing	Boxer Gold 2.5 l/ha
	7-Jul	Tillering	Triathlon 1 l/ha
Nitrogen:	5-Aug	GS30	Variable
	11-Sep	GS34	Variable
Fungicide:			Nil
PGR:			Nil

Released:24 February 2021

MFMG 🔍

• tia sfs

The GRDC Optimising Irrigated Grains Project is a collaborative project including the following project partners:

Irrigation Research & Extension Committee

Table 6. Amelioration trial inputs. Unless otherwise indicated by the treatment list in the individual trials the following inputs were applied to the faba bean trials at the Kerang Irrigated Research Centre.

Sowing Date:	Sowing Date:		24-Apr
Variety:			Wizard Forage Oat
Seed Rate:			80 kg/ha
Sowing Fertili	ser:		80kg MP
Seed Treatme	ent:		Raxil T 100ml/100kg
Herbicide:	24-Apr	Pre-sow	Glyphosate 450 1.5l/ha
	20-Jul	Pre-sow	Tigrex 1 I/ha
Nitrogen:	8-Jul	GS15	100kg N/ha
Fungicide:			Nil
PGR:			Nil

Released:24 February 2021

<u>Soil Test</u>

Fable 1 . Faba bean									
Paddock Name		Flood – Trials 01-4, 07-2, 09-2		Overhead Trials, 01-3					
Sampling Date			7/05/2	020			7/05/2	020	
Sample Depth		0-10 cm	0- 30 cm	30- 60 cm	60- 90 cm	0-10 cm	0- 30 cm	30- 60 cm	60- 90 cm
Soil Colour		Grey				Grey	Citi		UIII
Soil Texture		Clay		Clay		Clay		Clay	
Nitrate Nitrogen	mg/kg	22	22	13	7	25	38	17	5
Ammonium Nitrogen	mg/kg	2	6	5	5	2	2	3	3
Nitrate Nitrogen	kg/ha		86	55	30		148	66	21
Ammonium Nitrogen	kg/ha								
Total N	kg/ha			171				236	
Phosphorus (Colwell)	mg/kg	60				80			
Phosphorus Buffer Index (PBI-Col)		106				102			
Available Potassium	mg/kg	548				482			
Sulphur (KCl40)	mg/kg	18.5				16.8			
Organic Carbon (W&B)	%	1.05				0.81			
pH (1:5 Water)		7.6				7.8			
pH (1:5 CaCl2)		6.7				6.5			
Electrical Conductivity (1:5 water)	dS/m	0.151				0.218			
Elec. Cond. (Sat. Ext.)	dS/m								
Chloride	mg/kg								
Calcium (Amm-acet.)	cmol(+)/kg	14.00				13.43			
Potassium (Amm-acet.)	cmol(+)/kg	1.55				1.44			
Magnesium (Amm-acet.)	cmol(+)/kg	12.81				13.39			
Sodium (Amm-acet.)	cmol(+)/kg	2.43				2.70			
Aluminium (KCl)	cmol(+)/kg	0.05				0.06			
Cation Exch. Cap.	cmol(+)/kg	30.84				31.02			
Calcium/Magnesium Ratio		1.09				1.00			
Sodium % of Cations (ESP)	%	7.9				8.7			
Aluminium Saturation	%	0.2				0.2			
Aluminium (KCl)	mg/kg								
Calcium (Amm-acet.)	%								
Magnesium (Amm-acet.)	%								
Potassium (Amm-acet.)	%								
Phosphorus Environmental Risk Index									
Copper (DTPA)	mg/kg	2.22				2.54			

Released:24 February 2021

Iron (DTPA)	mg/kg	41.4	42.7
Manganese (DTPA)	mg/kg	14.01	12.72
Zinc (DTPA)	mg/kg	0.67	0.59
Boron (Hot CaCl2)	mg/kg	4.38	5.14

Table 2. Chickpeas							w / 1 -	C A	
Paddock Name				Trial 0					
Sampling Date			7/05/2				7/05/2		
Sample Depth		0-10	0- 30	30- 60	60- 90	0-10	0- 30	30- 60	60- 90
		cm	cm	cm	cm	cm	cm	cm	cm
Soil Colour			enn	CITI	UIII	Grey	enn	CIII	enn
		Grey				Brown			
Soil Texture		Clay		Clay		Clay		Clay	
Nitrate Nitrogen	mg/kg	14	18	13	8	10	17	14	12
Ammonium Nitrogen	mg/kg	2	9	4	6	8	4	4	3
Nitrate Nitrogen	kg/ha		66	59	34		66	59	50
Ammonium Nitrogen	kg/ha								
Total N	kg/ha			159				175	
Phosphorus (Colwell)	mg/kg	72				78			
Phosphorus Buffer Index (PBI-Col)		98				90			
Available Potassium	mg/kg	491				565			
Sulphur (KCl40)	mg/kg	10.2				6.4			
Organic Carbon (W&B)	%	0.98				0.92			
pH (1:5 Water)		7.9				6.7			
pH (1:5 CaCl2)		6.8				5.7			
Electrical Conductivity (1:5 water)	dS/m	0.123				0.067			
Elec. Cond. (Sat. Ext.)	dS/m								
Chloride	mg/kg								
Calcium (Amm-acet.)	cmol(+)/kg	13.87				11.82			
Potassium (Amm-acet.)	cmol(+)/kg	1.38				1.52			
Magnesium (Amm-acet.)	cmol(+)/kg	12.75				8.74			
Sodium (Amm-acet.)	cmol(+)/kg	2.13				0.29			
Aluminium (KCl)	cmol(+)/kg	0.07				0.09			
Cation Exch. Cap.	cmol(+)/kg	30.20				22.46			
Calcium/Magnesium Ratio		1.09				1.30			
Sodium % of Cations (ESP)	%	7.1				1.35			
Aluminium Saturation	%	0.2				0.4			
Aluminium (KCl)	mg/kg								
Calcium (Amm-acet.)	%								
Magnesium (Amm-acet.)	%								

MFMG **N**

• tia sfs

MAA

Potassium (Amm-acet.)	%		
Phosphorus Environmental Risk Index	(
Copper (DTPA)	mg/kg	2.19	2.46
Iron (DTPA)	mg/kg	43.8	91.1
Manganese (DTPA)	mg/kg	11.77	24.61
Zinc (DTPA)	mg/kg	0.45	2.35
Boron (Hot CaCl2)	mg/kg	3.92	1.29

Paddock Name	Trials	01-4, 0)3-2, 04	-2	Trial 01-3				
Sampling Date			7/05/2	020			7/05/2	020	
Sample Depth		0-10 cm	0- 30 cm	30- 60 cm	60- 90 cm	0-10 cm	0- 30 cm	30- 60 cm	60- 90 cm
Soil Colour		Grey				Grey			
Soil Texture		Clay		Clay		Clay		Clay	
Nitrate Nitrogen	mg/kg	11	17	22	19	25	38	17	5
Ammonium Nitrogen	mg/kg	3	3	3	3	2	2	3	3
Nitrate Nitrogen	kg/ha		66	92	80		148	66	21
Ammonium Nitrogen	kg/ha								
Total N	kg/ha			238				23	36
Phosphorus (Colwell)	mg/kg	66				93			
Phosphorus Buffer Index (PBI-Col)		105				102			
Available Potassium	mg/kg	462				527			
Sulphur (KCl40)	mg/kg	13.1				15.2			
Organic Carbon (W&B)	%	1.00				1.11			
pH (1:5 Water)									
pH (1:5 CaCl2)									
Electrical Conductivity (1:5 water)	dS/m	0.097				0.113			
Elec. Cond. (Sat. Ext.)	dS/m								
Chloride	mg/kg								
Calcium (Amm-acet.)	cmol(+)/kg	14.68				14.73			
Potassium (Amm-acet.)	cmol(+)/kg	1.38				1.50			
Magnesium (Amm-acet.)	cmol(+)/kg	10.76				10.37			
Sodium (Amm-acet.)	cmol(+)/kg	1.12				1.49			
Aluminium (KCl)	cmol(+)/kg	0.06				0.06			
Cation Exch. Cap.	cmol(+)/kg	27.99				28.15			
Calcium/Magnesium Ratio		1.36				1.42			
Sodium % of Cations (ESP)	%	4.0				5.3			

The GRDC Optimising Irrigated Grains Project is a collaborative project including the following project partners:

Irrigation Research & FAR

Aluminium Saturation	%	0.2	0.2
		0.2	0.2
Aluminium (KCl)	mg/kg		
Calcium (Amm-acet.)	%		
Magnesium (Amm-acet.)	%		
Potassium (Amm-acet.)	%		
Phosphorus			
Environmental Risk Index			
Copper (DTPA)	mg/kg	2.18	2.20
Iron (DTPA)	mg/kg	45.7	44.8
Manganese (DTPA)	mg/kg	19.85	16.27
Zinc (DTPA)	mg/kg	0.51	0.57
Boron (Hot CaCl2)	mg/kg	3.11	3.47

Paddock Name		Trials 01 08-2, 09-	•	2, 04-2 (07-2,	Trial 01-	3		
Sampling Date			7/05/2	020			7/05/2	020	
Sample Depth		0-10 cm	0- 30 cm	30- 60 cm	60- 90 cm	0-10 cm	0- 30 cm	30- 60 cm	60- 90 cm
Soil Colour		Grey				Grey			
Soil Texture		Clay		Clay		Clay		Clay	
Nitrate Nitrogen	mg/kg	18	18	14	9	27	38	12	7
Ammonium Nitrogen	mg/kg	5	12	9	10	5	8	7	6
Nitrate Nitrogen	kg/ha		70	60	38		148	50	30
Ammonium Nitrogen	kg/ha			168				228	
Total N	kg/ha								
Phosphorus (Colwell)	mg/kg	58				67			
Phosphorus Buffer Index (PBI-Col)		112				97			
Available Potassium	mg/kg	470				520			
Sulphur (KCl40)	mg/kg	15.7				43.1			
Organic Carbon (W&B)	%	1.27				1.39			
pH (1:5 Water)		7.5				7.7			
pH (1:5 CaCl2)		6.7				6.9			
Electrical Conductivity (1:5 water)	dS/m	0.136				0.214			
Elec. Cond. (Sat. Ext.)	dS/m								
Chloride	mg/kg								
Calcium (Amm-acet.)	cmol(+)/kg	14.32				15.19			
Potassium (Amm-acet.)	cmol(+)/kg	1.26				1.32			
Magnesium (Amm-acet.)	cmol(+)/kg	11.32				9.95			
Sodium (Amm-acet.)	cmol(+)/kg	1.75				2.74			

Aluminium (KCl)	cmol(+)/kg	0.70	0.04
Cation Exch. Cap.	cmol(+)/kg	28.72	29.24
Calcium/Magnesium Ratio		1.27	1.53
Sodium % of Cations (ESP)	%	6.1	9.4
Aluminium Saturation	%	0.2	0.1
Aluminium (KCl)	mg/kg		
Calcium (Amm-acet.)	%		
Magnesium (Amm-acet.)	%		
Potassium (Amm-acet.)	%		
Phosphorus Environmental Risk Index			
Copper (DTPA)	mg/kg	2.83	2.73
Iron (DTPA)	mg/kg	48.1	47.2
Manganese (DTPA)	mg/kg	15.59	14.75
Zinc (DTPA)	mg/kg	1.35	1.55
Boron (Hot CaCl2)	mg/kg	2.95	4.37

Table 5 Barley

Paddock Name	Trial B20-01-2				
Sampling Date		•	7/05/2	020	
Sample Depth		0-10 cm	0- 30 cm	30- 60 cm	60- 90 cm
Soil Colour		Grey Brown			
Soil Texture		Clay		Clay	
Nitrate Nitrogen	mg/kg	15	9	6	11
Ammonium Nitrogen	mg/kg	2	3	3	8
Nitrate Nitrogen	kg/ha		59	38	25
Ammonium Nitrogen	kg/ha				
Total N	kg/ha			122	
Phosphorus (Colwell)	mg/kg	34			
Phosphorus Buffer Index (PBI-Col)		115			
Available Potassium	mg/kg	569			
Sulphur (KCl40)	mg/kg	11.5			
Organic Carbon (W&B)	%	1.21			
pH (1:5 Water)		7.8			
pH (1:5 CaCl2)		7.2			
Electrical Conductivity (1:5 water)	dS/m	0.137			
Elec. Cond. (Sat. Ext.)	dS/m				
Chloride	mg/kg				

Released:24 February 2021

cmol(+)/kg	14.32	
cmol(+)/kg	1.57	
cmol(+)/kg	8.5	
cmol(+)/kg	0.5	
cmol(+)/kg	0.05	
cmol(+)/kg	24.94	
	1.68	
%	2.0	
%	0.2	
mg/kg		
%		
%		
%		
mg/kg	2.01	
mg/kg	29.8	
mg/kg	8.80	
mg/kg	0.45	
	cmol(+)/kg cmol(+)/kg cmol(+)/kg cmol(+)/kg cmol(+)/kg % % % % % % % % % % % % % % % % % % %	cmol(+)/kg 1.57 cmol(+)/kg 8.5 cmol(+)/kg 0.5 cmol(+)/kg 0.05 cmol(+)/kg 24.94 1.68 % 2.0 % 0.2 mg/kg

Table 6 Amelioration

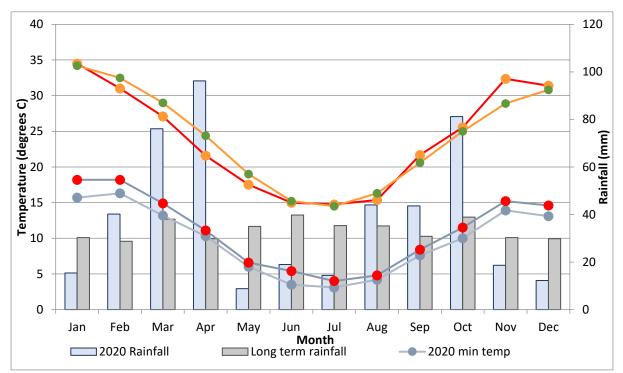
Paddock Name	Trial O20-06a-1				
Sampling Date	7/05/2020				
Sample Depth		0-10	0-	30-	60-
		cm	30	60	90
		-	cm	cm	cm
Soil Colour		Grey			
Soil Texture		Clay		Clay	
Nitrate Nitrogen	mg/kg	5	2	1	2
Ammonium Nitrogen	mg/kg	4	4	4	4
Nitrate Nitrogen	kg/ha		8	4	8
Ammonium Nitrogen	kg/ha				
Total N	kg/ha			20	
Phosphorus (Colwell)	mg/kg	36			
Phosphorus Buffer Index (PBI-Col)		121			
Available Potassium	mg/kg	296			
Sulphur (KCl40)	mg/kg	9.3			
Organic Carbon (W&B)	%	1.01			
pH (1:5 Water)		6.8			
pH (1:5 CaCl2)		5.5			

Released:24 February 2021

The GRDC Optimising Irrigated Grains Project is a collaborative project including the following project partners:

MAA

Electrical Conductivity (1:5 water)	dS/m	0.081
Elec. Cond. (Sat. Ext.)	dS/m	
Chloride	mg/kg	
Calcium (Amm-acet.)	cmol(+)/kg	6.91
Potassium (Amm-acet.)	cmol(+)/kg	0.75
Magnesium (Amm-acet.)	cmol(+)/kg	8.11
Sodium (Amm-acet.)	cmol(+)/kg	1.87
Aluminium (KCl)	cmol(+)/kg	0.06
Cation Exch. Cap.	cmol(+)/kg	17.70
Calcium/Magnesium Ratio		0.85
Sodium % of Cations (ESP)	%	10.6
Aluminium Saturation	%	0.3
Aluminium (KCl)	mg/kg	
Calcium (Amm-acet.)	%	
Magnesium (Amm-acet.)	%	
Potassium (Amm-acet.)	%	
Phosphorus Environmental Risk Index		
Copper (DTPA)	mg/kg	4.64
Iron (DTPA)	mg/kg	141.1
Manganese (DTPA)	mg/kg	20.46
Zinc (DTPA)	mg/kg	1.14
Boron (Hot CaCl2)	mg/kg	1.54



Griffith NSW

Meteorological Data

Figure 1. 2020 annual rainfall and long-term rainfall (1886-2020) (recorded at Whitton), 2020 min and max temperatures and long-term min and max temperatures (2000-2020) (recorded at Yanco). Rainfall April to October= 252.2mm.

Figure 2. Cumulative growing season rainfall (April-November) for 2020, 2019, and the long-term average.

Released:24 February 2021

la cia

MFMG

The GRDC Optimising Irrigated Grains Project is a collaborative project including the following project partners:

RiverinePlains

Irrigation Schedule

The trial was planned to be irrigated but well-above average April rainfall (106mm) on the back of a summer crop and predictions of a wetter season discouraged the co-operator from pre-irrigation. He decided the spring rainfall was sufficient, therefore unnecessary for any spring irrigation.

Crop Inputs

Table 1. Chickpea trial inputs. Unless otherwise indicated by the treatment list in the individual trials the following inputs were applied to the faba bean trials at the Griffith Irrigated Research Centre.

Sowing Date			28-May
Variety			Variable
Seed Rate			35 Plants/m2
Sowing Fertilise	er		250kg Superfect
Seed Treatment	t		Nil
Inoculum			Alosca granules 10kg/ha
Herbicide	27-May	Pre-sow	Glyphosate 450 1.8I/ha
	15-Jul	Vegetative	Select Xtra 300 ml/ha
Nitrogen			Nil
Fungicide	15-Jul	Vegetative	Mancozeb 1 kg/ha
	6-Aug	6 Node	Chlorothalonil 1.5 l/ha
	17-Sep	Pre-flowering	Chlorothalonil 1.5 l/ha
PGR			Nil

Soil Tests

Table 1 Chickpeas - Griffith				
Paddock Name		Trials	CP20-(05-2, 07-3
Sampling Date		2	8/05/	2020
-		0-10	0-	30-
		cm	30	60
	CIII	cm	cm	
Soil Colour		Grey		
		Brown		
Soil Texture		Clay		Clay
Nitrate Nitrogen	mg/kg	16	11	10
Ammonium Nitrogen	mg/kg	3	8	7
Nitrate Nitrogen	kg/ha		43	42
Ammonium Nitrogen	kg/ha			
Total N	kg/ha			85
Phosphorus (Colwell)	mg/kg	82		
Phosphorus Buffer Index				
(PBI-Col)				
Available Potassium	mg/kg	488		
Sulphur (KCl40)	mg/kg	22.6		
Organic Carbon (W&B)	%	1.10		
pH (1:5 Water)		7.2		
pH (1:5 CaCl2)		6.2		

Released:24 February 2021

The GRDC Optimising Irrigated Grains Project is a collaborative project including the following project partners:

Irrigation Research & **Extension Committee**

Electrical Conductivity	dS/m	0.142
(1:5 water)		0.2.12
Elec. Cond. (Sat. Ext.)	dS/m	
Chloride	mg/kg	
Calcium (Amm-acet.)	cmol(+)/kg	9.53
Potassium (Amm-acet.)	cmol(+)/kg	1.39
Magnesium (Amm-acet.)	cmol(+)/kg	8.04
Sodium (Amm-acet.)	cmol(+)/kg	1.88
Aluminium (KCl)	cmol(+)/kg	0.07
Cation Exch. Cap.	cmol(+)/kg	20.91
Calcium/Magnesium Ratio		1.19
Sodium % of Cations (ESP)	%	9.0
Aluminium Saturation	%	0.3
Aluminium (KCl)	mg/kg	
Calcium (Amm-acet.)	%	
Magnesium (Amm-acet.)	%	
Potassium (Amm-acet.)	%	
Phosphorus Environmental Risk Index		
Copper (DTPA)	mg/kg	2.85
Iron (DTPA)	mg/kg	62.7
Manganese (DTPA)	mg/kg	28.94
Zinc (DTPA)	mg/kg	0.42
Boron (Hot CaCl2)	mg/kg	3.23

Field Applied Research (FAR) Australia and Irrigated Cropping Council gratefully acknowledges the investment support of the GRDC in order to generate this research, project partners and the input of Southern Growers and IREC in managing the irrigation for this research trial.

These provisional results are offered by Field Applied Research (FAR) Australia solely to provide information. While all due care has been taken in compiling the information FAR Australia and employees take no responsibility for any person relying on the information and disclaims all liability for any errors or omissions in the publication.

Released:24 February 2021

MFMG

• tia sf

SOWING THE SEED FOR A BRIGHTER FUTURE

Field Applied Research (FAR) Australia

HEAD OFFICE: Shed 2/ 63 Holder Road Bannockburn VIC 3331 Ph: +61 3 5265 1290

> 97-103 Melbourne Street Mulwala **NSW** 2647 Ph: 03 5744 0516

> > 9 Currong Street Esperance WA 6450 Ph: 0437 712 011

Email: faraustralia@faraustralia.com.au Web: <u>www.faraustralia.com.au</u>

Released:24 February 2021

MFMG

satia 🚺

