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Research done within the

Smarter Irrigation for Profit 2

Objective: Support growers to monitor and
control irrigation remotely based on
Internet of Things and Remote Sensing

Challenge: How to automate the paddocks
providing water efficiency, reducing labour
and contributing with grower decision-
making process?




Research done within the

Smarter Irrigation for Profit 2

New technologies integrated and automated smart
sensing for cotton for

Forecast mechanism - save water in irrigation
Smart Irrigation Platform - IRRISENS

Wifield Logger / Automatic winches

Wi-Fi communication (range around 700m)




Project outcomes — IRRISENS platform

s, IRRISENS I
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Satellite
Farm Bay Name Irrigation Status Soil Tension L 3
o Bﬂ « Show monitoring bays, weather
.. — « Forecast soil tension
* Automatic control - system control
o - all gates openings and closings

without manual operation

= Automatic Control

Irrigation Summary

Winch Status

IRRISENS

Irrigation Log ~
Device Name Open Percentage Water Height
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As0125 100% 0.00mm Current Weather Weather Forecast
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. monitoring & control weather — critical data & evapotranspiration. ...




Project outcomes — IRRISENS platform

Monitor bay & machinery (field)
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Internet of Things (loT) drives innovation in AgTech
Electronics and equipment cheaper and reliable \/
Communication spread through paddocks (robust Wi-Fi, LoRa, etc) \/

Loggers / probes cover small areas

Labour to install and maintain the equipment in larger fields may be a challenge

Is it possible to create a mechanism to estimate soil matric
potential in larger areas reducing labour and maintenance?



Inspiration: IrriSAT + Remote Sensing
IrriSAT provides Cummulative Evapotranspiration for growers in larger areas

Limitation: Remote Sensing does not provide soil tension deeper in soil — root zone (20cm)

Challenge: Elaborate a machine learning model to combine sensors + remote sensing data
to estimate soil tension in areas without sensors installed, considering climate events




First Step Machine Learning — Data harvest and model training

Data haversted through Wifield Loggers - 3 seasons
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Dataset features — Algorithm Performance evaluation

Evaluation data

* Mixed data from all farms and all seasons
e Split data into training and testing

* window size 20 days (shuffled)

* 600<GDD<1700

Testing

* Data from bays not trained

* window size 20 days (shuffled)
* 600<GDD<1700

Weather data:
2019/20 — hotter and dryer — highest temp recorded (47.1C)
2020/21 - colder and wet — lowest temp recorded (19.7C)
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First Tentative

Use data only from IREC

“Machine learning model LSTM
could estimate soil tension from
non monitored bays successfully
with one and two season data”

Results with data from all 3 farms

& frontiers  Aboutus v Aljournals  Allarticles

Frontiers in Plant Science Sections v Articles Research Topics

Editorial Board

Aboutjournal

ORIGINAL RESEARCH article

Front. Plant Sci., 15 August 2022
Sec and Intelligent
Volume 135 - 2022 | https://doi.org/10.3383/fpis 2022 951491

Machine learning approach to estimate soil matric
potential in the plant root zone based on remote
sensing data

Rodrigo Filev Maia™. Carlos Ballester Lurbe and John Hornbuckle

https://doi.org/10.3389/fpls.2022.931491

IREC: Model Effectiveness — One Season 7 days forecast
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IREC: Model Effectiveness — Two Seasons 7 days forecast
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https://doi.org/10.3389/fpls.2022.931491

Second Tentative

Use data from all farms and all
seasons trying to forecast 14
days in advance

“Machine learning model CNN
could estimate soil tension from
non monitored bays successfully
considering all farms”

In CNN approx 83% of estimated
soil tension present similar sensor
measurement error

m dryer than sensor <=10kPa = wetter than sensor <=10kPa
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Concluding remarks

Machine learning models are able to estimate soil tension in no-monitored bays, since the model has as input
data from one monitored bay

Convolutional Neural Network (CNN) hits 83% of satisfactory soil tension results in non monitored bays
Models need at least 20 days of monitored data to estimate soil tension properly

Attention needed for wrong estimation provided by both LSTM (5%) and CNN (4%)
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