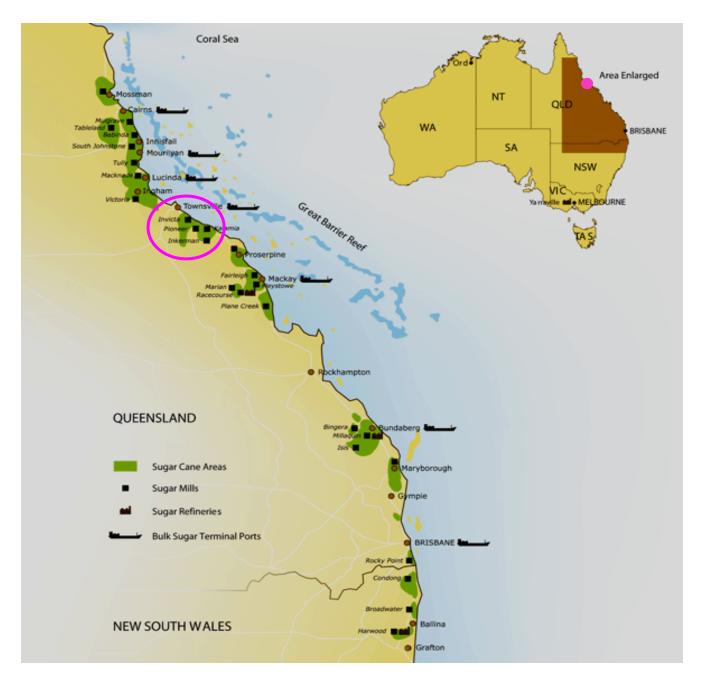
Irrigation Automation in the Burdekin Sugarcane Industry

Stephen Attard AgriTech Solutions Irrigating into the future IREC, Business & Technology Forum, Griffith Thursday 28 June 2018

Overview

- Burdekin sugarcane industry
- Automation system used
- Benefits
- Further Developments

AgriTech Solutions


DRY TROPICS

National Environmental Science Programme

~ 100,000 ha of irrigated land

- Sugarcane dominated
- Harvest 70,000 ha
- 8M tonnes cane
- 1.2M tonnes sugar
- <1,000 ha
 drip/overhead</pre>

- 8 ML/ha (approx.) surface water allocation
- Regulated groundwater extraction
- Low yielding bores

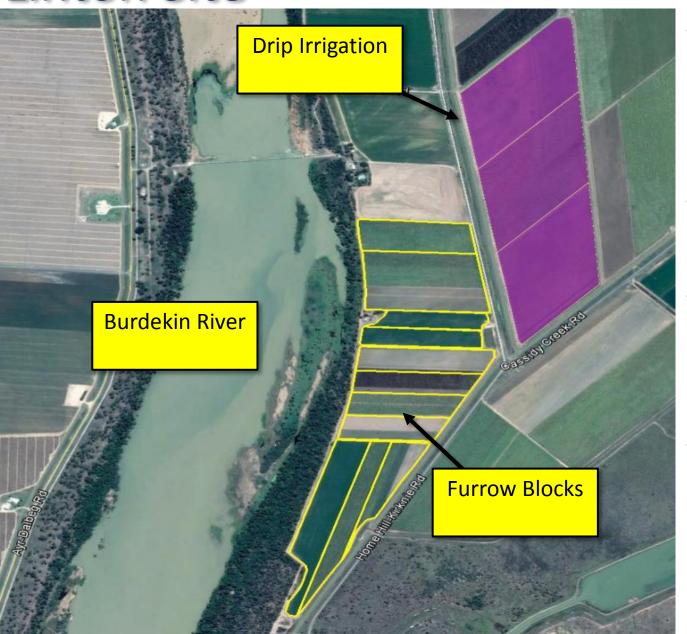
Data SIO, NOAA, U.S. Navy, NGA, GEBCO Image © 2011 GeoEye Image © 2011 DigitalGlobe © 2011 Cnes/Spot Image 9'39'16.26" S 147"15'55 55" E elev 29'm

- High yielding bores
- Unregulated
 groundwater extraction
- 8 ML/ha (approx.) surface water entitlement

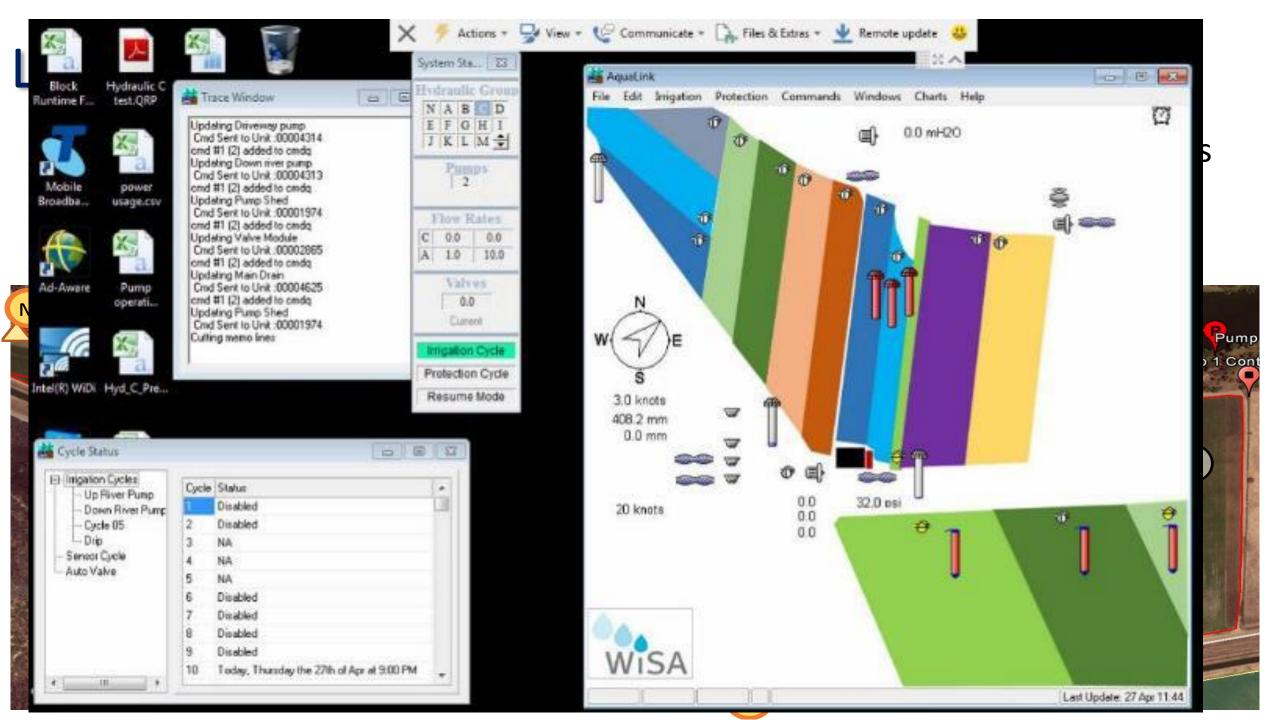
Google

Eye alt 68.58 km

agery Date: 8/9/2009


System Components

- (WiSA) Radio Base station
 - Connected to PC running control software
- Control system
 - Pump controller
 - Field Control nodes (can connect to two valves)
 - Actuator and valve for each block
- Supply Monitoring
 - Pressure (PST)
 - Flow
- Advance/Drainage Monitoring
 - Water level in drain or
 - advance detection within field
- Other optional sensors (e.g. wind, rain, soil moisture, etc)



Linton Site

- Water source:
 - River pumps for furrow
 - channel and recycle pit for drip
- 45 ha of Drip
 - 350 450 m long
- 51 ha of Furrow
 - 350 750 m long
- Farm is located 40 minutes drive from home

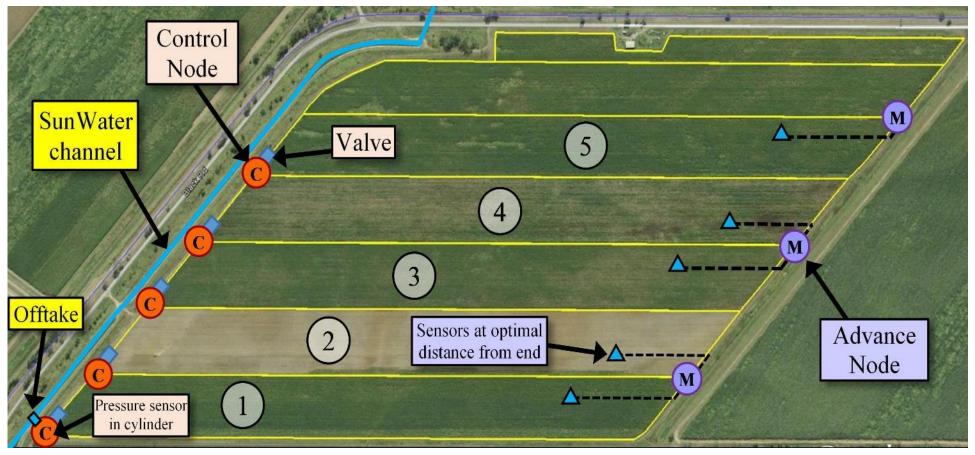
Linton Site

- 11 Irrigation blocks WHOLE farm is automated
- 6 control nodes & 11 valves
- 3 pumps with flowmeters and PST's
- 3 drain level sensors

Linton Site - Flowmeters

• EM flowmeters installed (replacing Sunwater meters)

Linton Site – Drain Level Sensors


- Detect small changes in water level in drain
- Farmer will calibrate:
 - First few furrows = small depth
 - Most furrows completed = larger depth
- Can be used to trigger next block to start

Jordan Site

- 82 ha, 1300m furrows
- 5 Irrigation blocks
- 5 control nodes (1 per valve)
- 1 Pressure transducer + Doppler flowmeter inside supply
- Advance sensors (100–200m from end with nodes outside field)
- Farmer wants to minimise Tail-water

Jordan Site

ND OF ROW 5 6

END OF ROW 3_4

END OF ROW 1_2

Pump Control

3.5kr

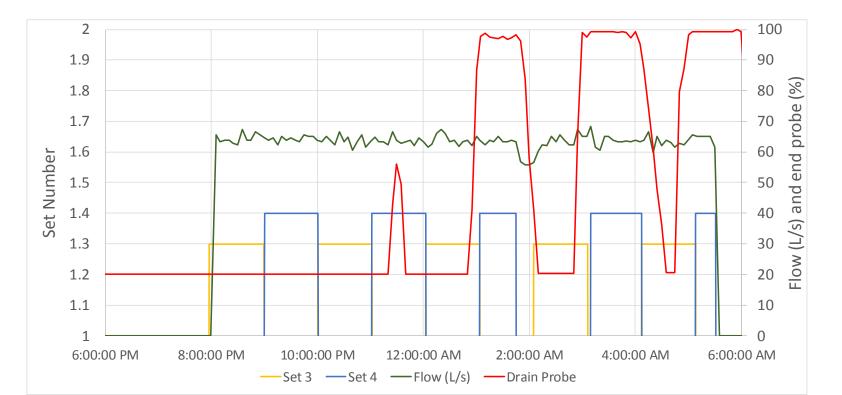
Ca

Jordan Site – Advance Sensors

- Not Possible with a fixed time schedule:
 - Sample of Completion times:

	Block 1	Block 2	Block 3	Block 4
Max time	1595	1559	1338	1153
Min Time	568	1273	840	885
Average (minutes)	869	1442	1006	999

- Water needs to be stopped several hours before reaching the drain
- A "Trigger Distance" determined for each block through SISCO modelling.
- Soil moisture sensors were buried at those locations (100 200m from end) and connected to radio node outside field.
- System is now set to switch to next irrigation set at the time at which water is detected



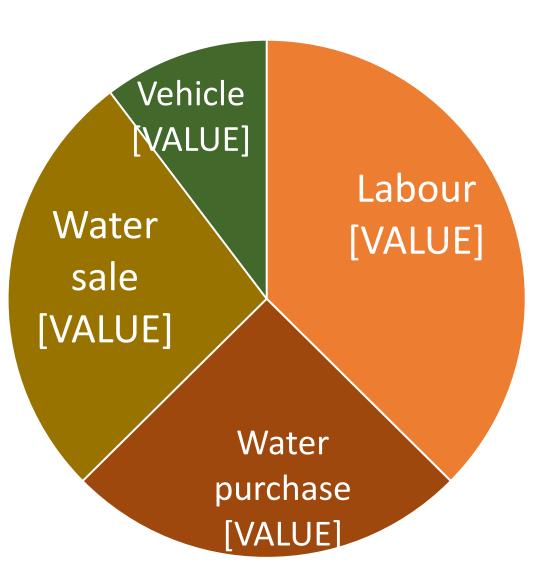
Jordan Site – Advance Sensors

Linton Site – Surging

- Records from the system indicated Aaron was under-irrigating some fields
 - Confirmed with IrrigWeb analysis
- Aaron tested surging on problem fields
 - Reduced run times & Increased depth infiltrated

Linton Site – Off Peak Power

- Aaron can now schedule all irrigations to occur in off peak power periods
 - Savings of around \$122.40 per hectare
 - Measured data approx. 2% usage in peak 98% in off peak

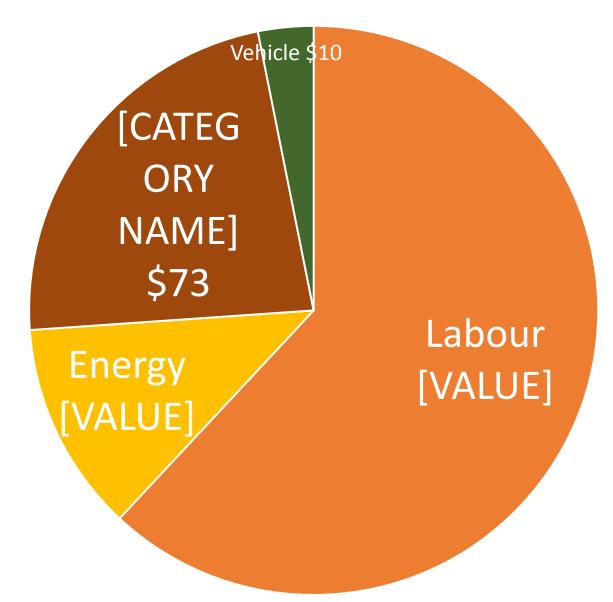


Farmer	Russell Jordan	Aaron Linton	Denis Pozzebon		
Area automated during project (ha)	82	53	27		
Summary of Benefits					
Water saving	√√ Approx. 10-15%	Blocks were being underwatered	√√ Approx 20%		
Energy use saving—reduced pumping time	Gravity system, no pumping	Not applicable	$\sqrt{\sqrt{2}}$		
Saving from changing electricity tariff	No pumping	√√√√ >40% reduction	Potential saving but not investigated during project		
Labour saving— time spent changing/checking irrigation and travelling to the farm	$\sqrt{\sqrt{\sqrt{2}}}$	$\sqrt{\sqrt{\sqrt{2}}}$	$\sqrt{\sqrt{\sqrt{2}}}$		
Vehicle cost saving		///// > 10,000 km/yr	√		
Improved record keeping— irrigation is automatically captured	$\sqrt{}$	$\checkmark\checkmark$	$\checkmark\checkmark$		
Social or family benefits	$\sqrt{\sqrt{\sqrt{2}}}$	$\sqrt{\sqrt{\sqrt{2}}}$	$\sqrt{\sqrt{\sqrt{2}}}$		
Water quality improvement	V				
Reduced deep drainage losses (water table impacts)	$\sqrt{\sqrt{2}}$	\checkmark	$\sqrt{}$		

Jordan – annual costs & savings (\$/ha)

	\$/ha/year	
Labour	\$58	
Electricity (energy)	\$0	
Electricity tariff	\$0	
Water purchases	\$39	
Water sales	\$42	
Vehicle R, M & F	\$16	
Total annual benefit	\$155	
Annual cost*	\$87	
Benefit - Cost	\$68	
Ψ		

* Borrowing costs not included


Linton – annual costs & savings (\$/ha)

	\$/ha/year
Labour	\$149
Electricity (energy)	\$36
Electricity tariff	\$122
Water purchases	\$1
Water sales	\$0
Vehicle R, M & F	\$70
Total annual benefit	\$378
Annual cost*	\$184
Benefit - Cost	\$194
* Borrowing costs not include	ed

Pozzebon – annual costs & savings (\$/ha)

	\$/ha/year	
Labour	\$197	
Electricity (energy)	\$38	
Electricity tariff	\$0	
Water purchases	\$73	
Water sales	\$0	
Vehicle R, M & F	\$10	
Total annual benefit	\$318	
Annual cost*	\$316	
Benefit - Cost	\$2	

* Borrowing costs not included

Developments

SRA funded project + farmer co-investment

- 3 farms
- 164 Ha

Sugar Research Australia®

AgriTech Solutions

Research

National Centre for

Engineering in Agriculture

2018 installation

- 3 original farmers
- 3 new farmers
- 550+ ha automated

AgriTech Solutions

NESP project 3.1.2

- Automate the irrigation and rainfall data from automation software (WiSA) to irrigation scheduling tool (IrrigWeb)
- Reduce farmer time Aaron Linton 2016/17 irrigation season
 - 1001 irrigation events
 - 118 rainfall events
 - Between 50 100 hours of manual data entry saved

National Environmental Science Programme

Stephen Attard AgriTech Solutions 0418 155 844 steve@agritechsolutions.com.au