

Optimising Irrigated Grains

Local Trial Results

Damian Jones ICC

Project Partners

Irrigated Cropping Council Promoting innigated agriculture

Southern Farming Systems

Durum Wheat Nitrogen Rate and Timing Trial

2 rates in addition to the co-operators N strategy 4 timings starting at GS30 Needed 100 kg N/ha at booting to achieve DR1 but was it worth it?

Results

Co-operator: 6.0 t/ha DR2 (11% protein) Additional N did not increase yield Two 'successful' treatments: 100 kg N/ha at GS43: 6.0 t/ha DR1 (13.4% protein) 50 kg N/ha at GS69: 5.1 t/ha DR1 (13.1% protein) All other treatments failed to reach DR1 (<13% protein)

So, was DR1 worth it?

6 t/ha of DR2 @ \$570/t = \$3420/ha income 6 t/ha of DR1 @ \$600/t = \$3600/ha or an extra \$180/ha But

100 kg N/ha = \$260/ha (Urea @\$1200/t) or a \$80/ha loss 50 kg N/ha (UAN) = \$550/ha loss

Conclusion I

We can grow irrigated durum wheat successfully and achieve DR1 if required.

High yield does require high N inputs to achieve the high protein levels required.

N budgeting: Starting soil N would be essential

Conclusion II

A considerable portion of the N required can be sourced from the appropriate rotation.

At the end of the day, the most profitable strategy will be determined by the price differentials between the durum grades and the cost of the nitrogen inputs.

Chickpeas Disease Management Trial

2019 – wet April, dry winter

- 2 Varieties: S and MS to ascochyta
- 3 Strategies: 'cheap', 'expensive' & untreated No strategy needed!

Treatments

	Management	4-5 weeks	Pre-Flower	Late Flower	
	Strategy	post emergence			
1	Untreated*	Chlorothalonil 720	-	-	
		1.0 l/ha			
2	Cheap	Chlorothalonil 720	Chlorothalonil 720	Chlorothalonil 720	
		1.0 l/ha	1.0 l/ha	1.0 l/ha	
3	Expensive	Veritas	Aviator Xpro	Veritas	
		1.0l/ha	600ml/ha	1.0l/ha	

Results

	Grain Yield (t/ha)		Grain Size (g/100 s)				
Treatment	PBA	Genesis	PBA	Genesis			
	Monarch	090	Monarch	090			
Untreated (Control)	1.82	1.90	40.5 a	32.7 b			
'Cheap'	1.96	1.96	40.8 a	33.2 b			
'Expensive'	2.11	1.84	40.5 a	32.5 b			
Yield: p _{var} = 0.427, p _{fung} = 0.458 p _{vxf} = 0.207, lsd _{vxf} = NS, cv% = 10.1							
Grain size: p _{var} = <0.001, p _{fung} = 0.784, p _{vxf} = 0.570, lsd _{vxf} = 2.45, cv% = 4.4							

Discussion

The intention to repeat the trial in 2021 and 2022. Wet autumns delayed sowing past the window. The trial was repeated at Finley and Kerang. Wetter and much wetter seasons.

GRDC

GRAINS RESEARCH & DEVELOPMENT CORPORATION

Irrigated Grains

GRDC

GRAINS RESEARCH & DEVELOPMENT CORPORATION

Irrigated Grains

Conclusion

Check the latest disease ratings for your intended variety Take into consideration the variety's current disease rating and plan you spray program in response to the season In a high disease pressure year, a spring strategy would need start in early August and be re-applied on a threeweek cycle

Chickpeas Inoculation Trial

Site previously grown chickpeas 5 years prior Inoculant at 3 rates – 10, 20 & 30 kg/ha 40 kg N/ha at either sowing or early podding High soil N at sowing Better nodulation but no yield response

Results – nodulation scoring

Treatment	Nodulation Score	
Nil (Control)	2.15	b
ALOSCA granules 10 kg/ha	2.65	ab
ALOSCA granules 20 kg/ha	2.80	а
ALOSCA granules 30 kg/ha80	3.00	а
N applied at Sowing 40 kg N/ha	1.85	b
N applied at Podding 40 kg N/ha	1.93	b
p = 0.004, $lsd = 0.61$, $cv% = 16.9$		

GRDC

GRAINS RESEARCH & DEVELOPMENT CORPORATION

Results - yield

Conclusion

- Chickpea inoculum seems to survive reasonably well in neutral clay soils.
- High soil N at sowing probably negated the need for the chickpea plant to fix its own nitrogen
- I would still recommend inoculating chickpeas. This ensures the right inoculum & the right numbers.

Thanks

IREC

Matt Toscan, Cavaso Farming John de Witt, Whitton

